

THE DYNAMICS OF ARTIFICIAL INTELLIGENCE

A STOCHASTIC APPROXIMATION VIEWPOINT

Παναγιώτης Μερτικόπουλος

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών

(Οικονομικό Πανεπιστήμιο Αθηνών | Σεμινάριο Στατιστικής | 28 Απριλίου, 2023)

0 1

Outline

- Background & motivation
- 2 Preliminaries
- Applications to minimization problems
- 4 Applications to min-max problems

About

V. Cevher

N. Hallak

Y.-P. Hsieh

A. Kavis

Y.-G. Hsieh

C. Papadimitriou

G. Piliouras

- Hsieh, M & Cevher, The limits of min-max optimization algorithms: convergence to spurious non-critical sets, ICML 2021
- Hsieh, lutzeler, Malick & M, Explore aggressively, update conservatively: Stochastic extragradient methods with variable stepsize scaling, NeurlPS 2020
- M, Hallak, Kavis & Cevher, On the almost sure convergence of stochastic gradient descent in non-convex problems, NeurlPS 2020
- M, Papadimitriou & Piliouras, Cycles in adversarial regularized learning, SODA 2018
- M, Hsieh & Cevher, Learning in games from a stochastic approximation viewpoint, https://arxiv.org/abs/2206.03922
- M & Zhou, Learning in games with continuous action sets and unknown payoff functions, Mathematical Programming, vol. 173, pp. 465-507, Jan. 2019

1. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Background & motivation

Stochastic approximation: from the 1950's...

Stochastic approximation

Find a root of a nonlinear system involving unknown functions, accessible only via noisy evaluations

Jack Kiefer & Jacob Wolfowitz

5/42

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Background & motivation

...to the 2020's

Which person is fake?

...to the 2020's

Which person is fake?

https://thispersondoesnotexist.com

ι. Μερτικόπουλος

 $Z_i \in \mathbb{R}^p$ Gaussian seed

ΠΑ. Τυήμα Μαθηματικών

5/42

5/42

. Μερτικόπουλος

5/42

. Μερτικόπουλος

Model likelihood:
$$L(G, D) = \prod_{i=1}^{N} D(X_i) \times \prod_{i=1}^{N} (1 - D(G(Z_i)))$$

. Μερτικόπουλος

GAN training

How to find good generators $(G \in \mathcal{G})$ and discriminators $(D \in \mathcal{D})$?

Discriminator: maximize (log-)likelihood estimation

$$\max_{D\in\mathcal{D}}\,\log L(G,D)$$

Generator: minimize the resulting divergence

$$\min_{G \in \mathcal{G}} \max_{D \in \mathcal{D}} \log L(G, D)$$

Training a GAN ← solving a min-max problem

Background & motivation

Figure: The loss landscape of a deep neural network [Li et al., 2018]

Overview

Main question: what is the long-run behavior of first-order training methods?

In minimization problems:

- Do gradient methods converge to critical points?
- Are non-minimizers avoided?

In min-max problems / games:

- Do gradient methods converge to critical points?
- Are non-equilibrium sets avoided?

Outline

- Background & motivation
- 2 Preliminaries
- Applications to minimization problems
- 4 Applications to min-max problems

Mathematical formulation

Minimization problems

$$\min_{x \in \mathcal{X}} f(x)$$

(Opt)

Saddle-point problems

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} f(x_1, x_2)$$

(SP)

Minimization problems (stochastic)

$$\min_{x \in \mathcal{X}} f(x) = \mathbb{E}_{\theta}[F(x; \theta)]$$
 (Opt)

Saddle-point problems (stochastic)

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} f(x_1, x_2) = \mathbb{E}_{\theta} [F(x_1, x_2; \theta)]$$
 (SP)

Problem formulation

Main difficulties:

- No convex structure
- Difficult to manipulate f in closed form

Preliminaries

technical assumptions later

black-box oracle methods

Problem formulation

Main difficulties:

- No convex structure
- lacktriangle Difficult to manipulate f in closed form

Preliminaries

technical assumptions later

black-box oracle methods

Focus on critical points:

Find
$$x^*$$
 such that $q(x^*) = 0$

(Crit)

where g(x) is the problem's **defining vector field**:

Gradient field for (Opt):

$$g(x) = \nabla f(x)$$

Hamiltonian field for (SP):

$$g(x) = (\nabla_{x_1} f(x_1, x_2), -\nabla_{x_2} f(x_1, x_2))$$

Notation:
$$x \leftarrow (x_1, x_2), \mathcal{X} \leftarrow \mathcal{X}_1 \times \mathcal{X}_2$$

10/42

Μερτικόπουλος __________________________________ΕΚΠΑ, Τμήμα Μαθηματικών

Assumptions

Blanket assumptions

Unconstrained problems:

 \mathcal{X} = finite-dimensional Euclidean space

Existence of solutions:

$$\operatorname{crit}(f) \coloneqq \{x^* \in \mathcal{X} : g(x^*) = 0\}$$
 is nonempty

► Lipschitz continuity:

$$|f(x') - f(x)| \le G||x' - x||$$
 for all $x, x' \in \mathcal{X}$

► Lipschitz smoothness:

$$\|g(x') - g(x)\| \le L\|x' - x\| \quad \text{for all } x, x' \in \mathcal{X}$$
 (LS)

ΕΚΠΑ, Τμήμα Μαθηματικών

(LC)

Stochastic approximation algorithms

Stochastic approximation template

$$X_{n+1} = X_n - \gamma_n \hat{g}_n \tag{SA}$$

where:

- $X_n \in \mathbb{R}^d$ is the **state** of the method at epoch n = 1, 2, ...
- \triangleright $\gamma_n > 0$ is a variable **step-size** parameter
- $\hat{q}_n \in \mathbb{R}^d$ is a stochastic approximation of $q(X_n)$

Blanket assumptions

Step-size sequence:

$$y_n \propto y/n^p$$

 $\# \gamma > 0, p \in [0, 1]$

2 Stochastic approximation:

$$\hat{g}_n = g(X_n) + U_n + b_n$$

where:

- $U_n = \hat{g}_n \mathbb{E}[\hat{g}_n \mid \mathcal{F}_n]$ is the **noise** in the method
- $b_n = \mathbb{E}[\hat{q}_n \mid \mathcal{F}_n] q(X_n)$ is the **offset** of the method

 $\# \mathbb{E}[\|U_n\|^q \mid \mathcal{F}_n] \leq \sigma_n^q$

 $\#\mathbb{E}[\|b_n\| \mid \mathcal{F}_n] \leq B_n$

Methods, I: Gradient descent/ascent

Gradient descent/ascent

[Arrow et al., 1958]

$$X_{n+1} = X_n - \gamma_n g(X_n)$$

(GDA)

Methods, II: Proximal point method

Proximal point method

[Martinet, 1970; Rockafellar, 1976]

$$X_{n+1} = X_n - \gamma_n g(X_{n+1})$$

(PPM)

Methods, III: Extra-gradient

Extra-gradient

[Korpelevich, 1976; Nemirovski, 2004]

$$X_{n+1} = X_n - \gamma_n g(X_{n+1/2})$$
 $X_{n+1/2} = X_n - \gamma_n g(X_n)$ (EG)

Methods, III: Extra-gradient

Extra-gradient

[Korpelevich, 1976; Nemirovski, 2004]

$$X_{n+1} = X_n - \gamma_n g(X_{n+1/2})$$
 $X_{n+1/2} = X_n - \gamma_n g(X_n)$ (EG)

Methods, III: Extra-gradient

Extra-gradient

[Korpelevich, 1976; Nemirovski, 2004]

$$X_{n+1} = X_n - \gamma_n g(X_{n+1/2})$$
 $X_{n+1/2} = X_n - \gamma_n g(X_n)$ (EG)

15/42

(OG)

Methods, IV: Optimistic gradient

Optimistic gradient

 $-\gamma g(x_{\text{lag}})$

[Popov, 1980; Rakhlin & Sridharan, 2013]

 $X_{n+1} = X_n - \gamma_n g(X_{n+1/2})$ $X_{n+1/2} = X_n - \gamma_n g(X_{n-1/2})$

Deterministic:

 $\sigma_n = 0$

Offset:

 $B_n = \mathcal{O}(\gamma_n)$

Methods, IV: Optimistic gradient

Optimistic gradient

[Popov, 1980; Rakhlin & Sridharan, 2013]

$$X_{n+1} = X_n - \gamma_n g(X_{n+1/2})$$
 $X_{n+1/2} = X_n - \gamma_n g(X_{n-1/2})$ (OG)

Methods, IV: Optimistic gradient

Optimistic gradient

[Popov, 1980; Rakhlin & Sridharan, 2013]

$$X_{n+1} = X_n - \gamma_n g(X_{n+1/2})$$
 $X_{n+1/2} = X_n - \gamma_n g(X_{n-1/2})$ (OG)

Oracle feedback

In many applications, perfect gradient information is unavailable / too costly:

Machine Learning:

$$f(x) = \sum_{i=1}^{N} f_i(x)$$
 and only a batch of $\nabla f_i(x)$ is computable per iteration

Reinforcement Learning / Control:

$$f(x) = \mathbb{E}[F(x;\theta)]$$
 and only $\nabla F(x;\theta)$ can be observed for a random θ

Game Theory / Bandits:

Only f(x) is observable

Stochastic first-order oracle

A **stochastic first-order oracle (SFO)** is a random field $G(x; \theta)$ with the following properties

• Unbiasedness:

$$\mathbb{E}_{\theta}[G(x;\theta)] = g(x)$$

② Finite variance:

$$\mathbb{E}_{\theta}[\|G(x;\theta)-g(x)\|^2] \leq \sigma^2$$

Methods, V: Robbins-Monro

Robbins-Monro (stochastic gradient descent)

[Robbins & Monro, 1951]

$$X_{n+1} = X_n - \gamma_n G(X_n; \theta_n)$$

(RM)

18/42

Methods, VI: Kiefer-Wolfowitz

The Kiefer-Wolfowitz algorithm

[Kiefer & Wolfowitz, 1952]

$$X_{n+1} = X_n \pm \gamma_n \frac{f(X_n + \delta_n \theta_n) - f(X_n - \delta_n \theta_n)}{2\delta_n} \theta_n$$
 (KW)

where $\theta_n \sim \text{unif}\{e_1, \dots, e_d\}$ is a **random direction** and δ_n is the **width** of the finite difference quotient

From algorithms to flows

Characteristic property of SA schemes

$$\frac{X_{n+1} - X_n}{\gamma_n} = -g(X_n) + Z_n \approx -g(X_n)$$
 "on average"

Mean dynamics

$$\dot{x}(t) = -g(x(t))$$

(MD)

From algorithms to flows

Characteristic property of SA schemes

$$\frac{X_{n+1} - X_n}{\gamma_n} = -g(X_n) + Z_n \approx -g(X_n)$$
 "on average"

Mean dynamics

$$\dot{x}(t) = -g(x(t)) \tag{MD}$$

Basic idea: If γ_n is "small", the errors wash out and " $\lim_{t\to\infty}$ (SA) = $\lim_{t\to\infty}$ (MD)"

Outline

- Background & motivation
- 2 Preliminaries
- **3** Applications to minimization problems
- 4 Applications to min-max problems

Convergence of gradient flows

Gradient flow

$$\dot{x}(t) = -\nabla f(x(t)) \tag{GF}$$

Main property: f is a (strict) **Lyapunov function** for (GF)

$$df/dt = -\|\nabla f(x(t))\|^2 \le 0$$
 w/ equality iff $\nabla f(x) = 0$

Convergence of trajectories

Controlling the algorithms' behavior

(A) *q* is subcoercive:

 $\langle g(x), x \rangle \ge 0$ for sufficiently large x

- The parameters of (SA) satisfy:
 - $\sum_{n} \gamma_n = \infty$
 - $\sum_{n} \gamma_n B_n < \infty$
 - $\sum_{n} v_n^2 \sigma_n^2 < \infty$

Theorem (Bertsekas & Tsitsiklis, 2000; M, Hallak, Kavis & Cevher, 2020)

- Assume: (A) + (B)
- Then: X_n converges (a.s.) to a component of crit(f) where f is constant.

Are all critical points desirable?

Figure: A hyperbolic ridge manifold, typical of ResNet loss landscapes [Li et al., 2018]

Are traps avoided?

Hyperbolic saddle (isolated non-minimizing critical point)

$$\lambda_{\min}(\operatorname{Hess}(f(x^*))) < 0, \quad \det(\operatorname{Hess}(f(x^*))) \neq 0$$

- \implies the flow is **linearly unstable** near x^*
- \implies convergence to x^* unlikely

Are traps avoided?

Hyperbolic saddle (isolated non-minimizing critical point)

$$\lambda_{\min}(\operatorname{Hess}(f(x^*))) < 0, \quad \det(\operatorname{Hess}(f(x^*))) \neq 0$$

- \implies the flow is **linearly unstable** near x^*
- \implies convergence to x^* unlikely

Theorem (Pemantle, 1990)

Assume:

- x* is a hyperbolic saddle point
- $b_n = 0$
- U_n is uniformly bounded (a.s.) and uniformly exciting

$$\mathbb{E}[[\langle U, z \rangle]_+] \ge c$$
 for all unit vectors $z \in \mathbb{S}^{d-1}$, $x \in \mathcal{X}$

 $\nu_n \propto 1/n$

Then: $\mathbb{P}(\lim_{n\to\infty} X_n = x^*) = 0$

Escape from non-hyperbolic traps

Strict saddles

$$\lambda_{\min}(\operatorname{Hess}(f(x^*))) < 0$$

Escape from non-hyperbolic traps

Strict saddles

$$\lambda_{\min}(\operatorname{Hess}(f(x^*))) < 0$$

Theorem (Ge et al., 2015)

Given: tolerance level $\zeta > 0$

Assume:

- f is bounded and satisfies (LS)
- Hess(f(x)) is Lipschitz continuous
- for all $x \in \mathcal{X}$: (a) $\|\nabla f(x)\| \ge \varepsilon$; or (b) $\lambda_{\min}(\operatorname{Hess}(f(x))) \le -\beta$; or (c) x is δ -close to a local minimum x^* of faround which f is α -strongly convex
- $b_n = 0$
- \triangleright U_n is uniformly bounded (a.s.) and contains a component uniformly sampled from the unit sphere
- $y_n \equiv y$ with $y = \mathcal{O}(1/\log(1/\zeta))$

with probability at least $1 - \zeta$, SGD produces after $\mathcal{O}(\gamma^{-2} \log(1/(\gamma \zeta)))$ iterations a point which is Then: $\mathcal{O}(\sqrt{\gamma}\log(1/(\gamma\zeta)))$ -close to x^*

Are non-hyperbolic traps avoided almost surely?

Theorem (M, Hallak, Kavis & Cevher, 2020)

Assume:

- ▶ The offset term is bounded as $b_n = \mathcal{O}(\gamma_n)$
- The noise term U_n is bounded (a.s.) and uniformly exciting

$$\mathbb{E}[\langle U, z \rangle^+] \ge c$$
 for all unit vectors $z \in \mathbb{S}^{d-1}$, $x \in \mathcal{X}$

 $v_n \propto 1/n^p$ for some $p \in (0,1]$

Then: $\mathbb{P}(X_n \text{ converges to a set of strict saddle points}) = 0$

Outline

- Background & motivation
- 2 Preliminaries
- **3** Applications to minimization problems
- 4 Applications to min-max problems

Minimization vs. min-max optimization

In minimization problems:

- ✓ RM methods converge to the problem's critical set
- ✓ RM methods avoid spurious, non-minimizing critical manifolds

27/4

. Μερτικόπουλος

0.000000000000

Minimization vs. min-max optimization

In minimization problems:

- ✓ RM methods converge to the problem's critical set
- ✓ RM methods avoid spurious, non-minimizing critical manifolds

Do these properties carry over to min-max optimization problems?

Applications to min-max problems 0.000000000000

Minimization vs. min-max optimization

In minimization problems:

- ✓ RM methods converge to the problem's critical set
- ✓ RM methods avoid spurious, non-minimizing critical manifolds

Do these properties carry over to min-max optimization problems?

Do min-max algorithms

- Converge to unilaterally stable/stationary points?
- Avoid spurious, non-equilibrium sets?

Min-max dynamics

Mean dynamics

$$\dot{x}(t) = -g(x(t)) \tag{MD}$$

✓ Minimization problems: (MD) is a gradient flow

 $\# g = \nabla f$

X Min-max problems: (MD) can be arbitrarily complicated

non-potential *g*

Min-max dynamics

Mean dynamics

$$\dot{x}(t) = -g(x(t)) \tag{MD}$$

Minimization problems: (MD) is a gradient flow

 $\# q = \nabla f$

X Min-max problems: (MD) can be arbitrarily complicated # non-potential q

Theorem (Hsieh et al., 2021)

Assume:

- ▶ The offset term is bounded as $b_n = \mathcal{O}(\gamma_n)$
- \blacktriangleright The noise term U_n is bounded (a.s.) and uniformly exciting

$$\mathbb{E}[\langle U, z \rangle^{+}] \geq c$$
 for all unit vectors $z \in \mathbb{S}^{d-1}$, $x \in \mathcal{X}$

 $\nu_n \propto 1/n^p$ for some $p \in (0,1]$

Then: $\mathbb{P}(X_n \text{ converges to an unstable point / periodic orbit}) = 0$

Minimization vs. min-max optimization

Qualitatively similar landscape (??)

- ► Components of critical points ⇔ chain transitive sets
- Avoidance of strict saddles ↔ avoidance of unstable periodic orbits

Is there a fundamental difference between min and min-max problems?

Qualitatively similar landscape (??)

- ► Components of critical points ↔ chain transitive sets
- ▶ Avoidance of strict saddles ↔ avoidance of unstable periodic orbits

Is there a fundamental difference between min and min-max problems?

Non-gradient problems may have spurious invariant sets!

Spurious \implies contains no critical points

29/42

Toy example: bilinear problems

Bilinear min-max problems

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} f(x_1, x_2) = (x_1 - b_1)^{\mathsf{T}} A(x_2 - b_2)$$

Mean dynamics:

$$\dot{x}_1 = -A(x_2 - b_2)$$
 $\dot{x}_2 = A^{\mathsf{T}}(x_1 - b_1)$

Bilinear min-max problems

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} \quad f(x_1, x_2) = (x_1 - b_1)^{\mathsf{T}} A(x_2 - b_2)$$

Mean dynamics:

$$\dot{x}_1 = -A(x_2 - b_2)$$
 $\dot{x}_2 = A^{\mathsf{T}}(x_1 - b_1)$

Energy function:

$$E(x) = \frac{1}{2}||x_1 - b_1||^2 + \frac{1}{2}||x_2 - b_2||^2$$

Lyapunov property:

$$\frac{dE}{dt} \le 0$$
 w/ equality if $A = A^{T}$

⇒ distance to solutions (weakly) decreasing along (MD)

30/42

I. Μερτικόπουλος

Periodic orbits

Roadblock: the energy may be a constant of motion

Figure: Hamiltonian flow of $f(x_1, x_2) = x_1x_2$

31/47

Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικ

Poincaré recurrence

Definition (Poincaré, 1890's)

A system is Poincaré recurrent if almost every orbit returns infinitely close to its starting point infinitely often

Poincaré recurrence

Definition (Poincaré, 1890's)

A system is Poincaré recurrent if almost every orbit returns infinitely close to its starting point infinitely often

Theorem (M, Papadimitriou, Piliouras, 2018; unconstrained version)

(MD) is Poincaré recurrent in all bilinear min-max problems that admit an equilibrium

The stochastic case

Figure: Behavior of gradient and extra-gradient methods with stochastic feedback

First-order training methods converge to a (random) periodic orbit

#But see also Chavdarova et al., 2019; Hsieh et al., 2020

. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

The Kupka-Smale theorem

Systems with the structure of bilinear games are rare:

Theorem (Kupka, 1963)

Let $\mathcal{V} = C^2(\mathbb{R}^d; \mathbb{R}^d)$ be the space of C^2 vector fields on \mathbb{R}^d endowed with the Whitney topology. Then the set of vector fields with a non-trivial recurrent set is **meager** (in the Baire category sense).

Theorem (Smale, 1963)

For any vector field $q \in \mathcal{V}$, the following properties are generic (in the Baire category sense):

- All closed orbits are **hyperbolic**
- Heteroclinic orbits are **transversal** (i.e., stable and unstable manifolds intersect transversally)

TLDR: non-attracting periodic orbits are **non-generic** (they occur negligibly often)

Convergence to attractors

Attractors → natural solution concepts for non-min problems

Theorem (Hsieh et al., 2021)

Assume: S is an attractor of (MD) + step-size conditions (B)

Then: For every tolerance level $\alpha > 0$, there exists a neighborhood $\mathcal U$ of $\mathcal S$ such that

 $\mathbb{P}(X_n \text{ converges to } S \mid X_1 \in \mathcal{U}) \geq 1 - \alpha$

Applications to min-max problems 00000000000000

Almost bilinear games

Consider the "almost bilinear" game

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} \quad f(x_1, x_2) = x_1 x_2 + \varepsilon \phi(x_2)$$

where
$$\varepsilon > 0$$
 and $\phi(x) = (1/2)x^2 - (1/4)x^4$

Properties:

- Unique critical point at the origin
- Unstable under (MD)

X All RM algorithms attracted to spurious limit cycle from almost all initial conditions

→ Hsieh et al., 2021

Spurious attractors in almost bilinear games

RM algorithms converge to a spurious limit cycle with no critical points

Figure: Convergence to a spurious attractor. Left: stochastic gradient descent; right: stochastic extra-gradient

Forsaken solutions

Another almost bilinear game

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} f(x_1, x_2) = x_1 x_2 + \varepsilon [\phi(x_1) - \phi(x_2)]$$

where
$$\varepsilon > 0$$
 and $\phi(x) = (1/4)x^2 - (1/2)x^4 + (1/6)x^6$

Properties:

- Unique critical point near the origin
- Stable under (MD), but not a local min-max
- Two isolated periodic orbits:
 - One unstable, shielding critical point, but small
 - ▶ One stable, attracts all trajectories of (MD) outside small basin

◆ Hsieh et al., 2021

Forsaken solutions in almost bilinear games

With high probability, all Robbins-Monro (RM) algorithms forsake the game's unique (local) equilibrium

Figure: Convergence to a spurious attractor. Left: stochastic gradient descent; right: stochastic extra-gradient

Conclusions

Minimization and min-max optimization problems are fundamentally different:

- Min-max methods may have limit points that are neither stable nor stationary
- Bilinear games are **not** representative case studies for min-max optimization
- Cannot avoid spurious, non-equilibrium sets with positive probability
- Different approach needed (mixed-strategy learning, multiple-timescales, adaptive methods...)

Many open questions:

- What about second-order methods?
- Applications to finite games (where bilinear games are no longer fragile)?
- Which equilibria are stable under first-order methods for learning in games?
- **...**

References I

- Arrow, K. J., Hurwicz, L., and Uzawa, H. Studies in linear and non-linear programming. Stanford University Press, 1958.
- $Bertsekas, D.\ P.\ and\ Tsitsiklis, J.\ N.\ Gradient\ convergence\ in\ gradient\ methods\ with\ errors.\ SIAM\ Journal\ on\ Optimization,\ 10(3):627-642,\ 2000.$
- Chavdarova, T., Gidel, G., Fleuret, F., and Lacoste-Julien, S. Reducing noise in GAN training with variance reduced extragradient. In NeurIPS '19: Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019.
- Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from saddle points Online stochastic gradient for tensor decomposition. In COLT '15: Proceedings of the 28th Annual Conference on Learning Theory, 2015.
- Hsieh, Y.-G., lutzeler, F., Malick, J., and Mertikopoulos, P. Explore aggressively, update conservatively: Stochastic extragradient methods with variable stepsize scaling. In NeurIPS '20: Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020.
- Hsieh, Y.-P., Mertikopoulos, P., and Cevher, V. The limits of min-max optimization algorithms: Convergence to spurious non-critical sets. In ICML '21: Proceedings of the 38th International Conference on Machine Learning, 2021.
- Kiefer, J. and Wolfowitz, J. Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, 23(3):462-466, 1952.
- Korpelevich, G. M. The extragradient method for finding saddle points and other problems. Èkonom. i Mat. Metody, 12:747-756, 1976.
- Kupka, I. Contribution à la théorie des champs génériques. Contributions to Differential Equations, 2:457-484, 1963.
- Li, H., Xu, Z., Taylor, G., Suder, C., and Goldstein, T. Visualizing the loss landscape of neural nets. In NeurIPS '18: Proceedings of the 32nd International Conference of Neural Information Processing Systems, 2018.
- Martinet, B. Régularisation d'inéquations variationnelles par approximations successives. ESAIM: Mathematical Modelling and Numerical Analysis, 4(R3):154-158, 1970.

Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

References II

- Mertikopoulos, P. and Zhou, Z. Learning in games with continuous action sets and unknown payoff functions. Mathematical Programming, 173 (1-2):465-507. January 2019.
- Mertikopoulos, P., Papadimitriou, C. H., and Piliouras, G. Cycles in adversarial regularized learning. In SODA '18: Proceedings of the 29th annual ACM-SIAM Symposium on Discrete Algorithms, 2018.
- Mertikopoulos, P., Hallak, N., Kavis, A., and Cevher, V. On the almost sure convergence of stochastic gradient descent in non-convex problems. In NeurIPS '20: Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020.
- Mertikopoulos, P., Hsieh, Y.-P., and Cevher, V. A unified stochastic approximation framework for learning in games. https://arxiv.org/abs/2206.03922.2022.
- Nemirovski, A. S. Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15(1):229-251, 2004.
- Pemantle, R. Nonconvergence to unstable points in urn models and stochastic aproximations. Annals of Probability, 18(2):698-712, April 1990.
- Popov, L. D. A modification of the Arrow-Hurwicz method for search of saddle points. Mathematical Notes of the Academy of Sciences of the USSR, 28(5):845-848, 1980.
- Rakhlin, A. and Sridharan, K. Optimization, learning, and games with predictable sequences. In NIPS '13: Proceedings of the 27th International Conference on Neural Information Processing Systems, 2013.
- Robbins, H. and Monro, S. A stochastic approximation method. Annals of Mathematical Statistics, 22:400-407, 1951.
- Rockafellar, R. T. Monotone operators and the proximal point algorithm. SIAM Journal on Optimization, 14(5):877-898, 1976.
- Smale, S. Stable manifolds for differential equations and diffeomorphisms. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 17 (1-2):97-116, 1963.