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Stochastic approximation: from the 1950's...

Stochastic approximation

Find a root of a nonlinear system involving unknown functions, accessible only via noisy evaluations

Herbert Robbins & Sutton Monro
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Generative adversarial networks
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Generative adversarial networks

Gaussian
Zi ¢ RP seed .

Generator - Discriminator
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Model likelihood: L(G,D) = ﬁD(Xi) x ﬁ(l - D(G(Z))))
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GAN training

How to find good generators (G € G) and discriminators (D € D)?

Discriminator: maximize (log-)likelihood estimation

max log L(G, D
DeD gL( )
Generator: minimize the resulting divergence

i log L(G,D
2 5 s (G D)

Traininga GAN <= solving a min-max problem
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Figure: The loss landscape of a deep neural network [Li et al., 2018]
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Overview

Main question: what is the long-run behavior of first-order training methods?

In minimization problems:
= Do gradient methods converge to critical points?

= Are non-minimizers avoided?

In min-max problems / games:

= Do gradient methods converge to critical points?

= Are non-equilibrium sets avoided?
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Mathematical formulation

Minimization problems

min f(x) (Op)

Saddle-point problems

i SP
iy max fGam) 2
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Mathematical formulation

Minimization problems (stochastic)

min f(x) = Eo[F(x;60)] (©Opy

Saddle-point problems (stochastic)

min max f(x1,x2) = Eg[F(x1,x2;0)] (SP)

X1€X] X2€X),

MaBnuatiy
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Problem formulation

Main difficulties:

> No convex structure # technical assumptions later

> Difficult to manipulate f in closed form #black-box oracle methods
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Problem formulation

Main difficulties:
> No convex structure # technical assumptions later

> Difficult to manipulate f in closed form #black-box oracle methods

Focus on critical points:
Find x™ such that g(x*) =0 (Crit)

where g(x) is the problem’s defining vector field:

> Gradient field for (Opt):
g(x) = Vf(x)
> Hamiltonian field for (SP):

g(x) = (VJqf(xl»xz);—szf(xl,xz))

# Notation: x < (x1,x2), X <« X1 x X
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Assumptions

Blanket assumptions

*> Unconstrained problems:
X = finite-dimensional Euclidean space

> Existence of solutions:
crit(f) = {x" e X : g(x*) =0} is nonempty

> Lipschitz continuity:
If(x") = f(x)| < G|x = x| forallx,x" e X (LO)

> Lipschitz smoothness:

lg(x) —g(x)| <L|x x| forallx,x"eX (LS)

MaBnuatiy
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Stochastic approximation algorithms

} Stochastic approximation template

Xn+1 = Xn - Yngn (SA)

where:
> X, € R? is the state of the method at epochn=1,2,...
> y, > 0 is a variable step-size parameter

» §, € R? is a stochastic approximation of g(X,,)

v

Blanket assumptions

© Step-size sequence:
Y o< y/nP #y>0,pel0,1]
@ Stochastic approximation:
gn=9(Xn) + U, + by
where:
» Uy = gn — E[gn | Fu] is the noise in the method #E[||U, || F] < ol
> b, =E[gn| Fn] - g(Xn) is the offset of the method #E[|[ba] | Ful < Bu

EKMA, Thiipa MaBnuatuby
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Methods, I: Gradient descent/ascent

Gradient descent/ascent

[Arrow et al., 1958]

Xn+1 = Xn — Yng(Xn)

(GDA)
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Methods, II: Proximal point method

Proximal point method [Martinet, 1970; Rockafellar, 1976]

X1 =Xy — ))ng(Xn+1) (PPM)
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Methods, IlI: Extra-gradient

Extra-gradient [Korpelevich, 1976; Nemirovski, 2004]

X1 = Xn — Yng(XnH/Z) Xn+1/2 =Xy — Yng(Xn) (EG)
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Methods, IlI: Extra-gradient

Extra-gradient [Korpelevich, 1976; Nemirovski, 2004]

X1 = Xn — Yng(XnH/Z) Xn+1/2 =Xy — Yng(Xn) (EG)
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Extra-gradient [Korpelevich, 1976; Nemirovski, 2004]
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Methods, IV: Optimistic gradient

OptimiStiC gradient [Popov, 1980; Rakhlin & Sridharan, 2013]

X1 = Xn — )/ng(Xn+1/z) Xn+1/2 =X, - )’ng(Xn—l/z) (OG)
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Optimistic gradient [Popov, 1980; Rakhlin & Sridharan, 2013]
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Methods, IV: Optimistic gradient

Optimistic gradient [Popov, 1980; Rakhlin & Sridharan, 2013]

X1 = Xn — yng(Xn+1/z) Xn+1/2 =X, - )’ng(Xn—l/z) (OG)
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/\ Offset:
By =O(yn)
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Oracle feedback

In many applications, perfect gradient information is unavailable / too costly:

> Machine Learning:

f(x) = XN, fi(x) and only a batch of ¥ f;(x) is computable per iteration

> Reinforcement Learning / Control:
f(x) =E[F(x;0)] and only VF(x; ) can be observed for a random 6

> Game Theory / Bandits:
Only f(x) is observable

Stochastic first-order oracle

A stochastic first-order oracle (SFO) is a random field G (x; 8) with the following properties
© Unbiasedness: Eg[G(x;0)] = g(x)

® Finite variance: Eo[||G(x50) — g(x)||2] < ot
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Methods, V: Robbins-Monro

Robbins-Monro (stochastic gradient descent)

[Robbins & Monro, 1951]
Xn+1 = Xn - YnG(Xn; 911)

(RM)
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Methods, VI: Kiefer-Wolfowitz

The Kiefer-Wolfowitz algorithm [Kiefer & Wolfowitz, 1952]

f(Xn+846n) = f(Xn — 6404)
Yn 20,

where 0, ~ unif{ey, ..., e, } is a random direction and 8, is the width of the finite difference quotient

Xn+1 = Xn + en (KW)
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From algorithms to flows

Characteristic property of SA schemes

Xns1 — Xa “ »
S N o _g(Xa) + Zn v —g(X,) “on average
Vn

Mean dynamics

x(1) = —g(x(1)) (MD)
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From algorithms to flows

Characteristic property of SA schemes

Xns1 — Xa “ »
S N o _g(Xa) + Zn v —g(X,) “on average
Vn

Mean dynamics

x(1) = —g(x(1)) (MD)

Basic idea: If y, is “small”, the errors wash out and “lim;_, e (SA) = lim; .o, (MD)”

1BNHATKY
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Convergence of gradient flows

Gradient flow

x(t) = -V f(x(1)) (GF)

Main property: f is a (strict) Lyapunov function for (GF)

dfjdt=-|Vf(x(t)|* <0  w/equalityiff Vf(x) =0
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Convergence of trajectories

Controlling the algorithms' behavior

(A) g is subcoercive:
(g(x),x) >0 for sufficiently large x

(B) The parameters of (SA) satisfy:
> Xnyn=o00
> Y YnBn < oo
> T, yn0n <00

Theorem (Bertsekas & Tsitsiklis, 2000; M, Hallak, Kavis & Cevher, 2020)

=5 Assume: (A) + (B)

w= Then: X, converges (as.) to a component of crit( f) where f is constant.

1BNHATKY
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Are all critical points desirable?

2

Figure: A hyperbolic ridge manifold, typical of ResNet loss landscapes [Li et al., 201 8]
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Are traps avoided?

Hyperbolic saddle (isolated non-minimizing critical point)

Amin (Hess(f(x*))) <0, det(Hess(f(x*))) #0

= the flow is linearly unstable near x*

== convergence to x* unlikely
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Are traps avoided?

Hyperbolic saddle (isolated non-minimizing critical point)

Amin (Hess(f(x*))) <0, det(Hess(f(x*))) #0
== the flow is linearly unstable near x*

* .
== convergence to x~ unlikely

Theorem (Pemantle, 1990)

Assume:
> x* is a hyperbolic saddle point
> b, =0

> U, is uniformly bounded (a.s.) and uniformly exciting

E[[(U,z)]+] > ¢ forall unit vectors z € S xeXx
> yn o< 1/n

Then: P(limy—o X, =x) =0

MaBnuatiy
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Escape from non-hyperbolic traps

Strict saddles

Amin (Hess(f(x7))) <0
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Escape from non-hyperbolic traps

Strict saddles
Amin (Hess(f(x7))) <0

Theorem (Ge et al., 2015)
Given:  tolerance level { > 0
Assume:
> fis bounded and satisfies (LS)
> Hess(f(x)) is Lipschitz continuous

> forall x € X: (a) |V f(x)| = &or (b) Amin (Hess(f(x))) < —por (c) x is 8-close to a local minimum x* of f
around which f is a-strongly convex

> b, =0
> U, is uniformly bounded (a.s.) and contains a component uniformly sampled from the unit sphere
> yn = ywithy = O(1/log(1/{))

Then:  with probability at least 1 — {, SGD produces after O(y~>1log(1/(y{))) iterations a point which is
O(/ylog(1/(y¢)))-close to x*

EKMA, Thiipa MaBnuatuby
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Are non-hyperbolic traps avoided almost surely?

Theorem (M, Hallak, Kavis & Cevher, 2020)

Assume:
> The offset term is bounded as b, = O(yn)

> The noise term U, is bounded (a.s.) and uniformly exciting

E[(U,z)"] > ¢ forallunitvectors z ¢ S, x € X

» yn o< 1/n? for some p € (0,1]

Then:  P(X, converges to a set of strict saddle points) = 0

MaBnuatiy
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Minimization vs. min-max optimization

In minimization problems:

v/ RM methods converge to the problem’s critical set

v/ RM methods avoid spurious, non-minimizing critical manifolds
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Minimization vs. min-max optimization

In minimization problems:

v/ RM methods converge to the problem’s critical set

v/ RM methods avoid spurious, non-minimizing critical manifolds

Do these properties carry over to min-max optimization problems?
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Minimization vs. min-max optimization

In minimization problems:

v/ RM methods converge to the problem’s critical set

v/ RM methods avoid spurious, non-minimizing critical manifolds

Do these properties carry over to min-max optimization problems?

Do min-max algorithms

1= Converge to unilaterally stable/stationary points?

1= Avoid spurious, non-equilibrium sets?
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Min-max dynamics

Mean dynamics

(1) = —g(x(1)) (MD)

v Minimization problems: (MD) is a gradient flow #g=Vf

X Min-max problems: (MD) can be arbitrarily complicated # non-potential g
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Min-max dynamics

Mean dynamics

(1) = —g(x(1)) (MD)
v/ Minimization problems: (MD) is a gradient flow #g=Vf
X Min-max problems: (MD) can be arbitrarily complicated # non-potential g

Theorem (Hsieh et al., 2021)
Assume:
> The offset term is bounded as b, = O(yx)

> The noise term U, is bounded (as.) and uniformly exciting
E[(U,z)*] > ¢ forall unitvectors z € S*, x € X
> y, o< 1/n? for some p € (0,1]

Then: ~ IP(X, converges to an unstable point / periodic orbit) = 0

\

fia MaBnpatkev
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Minimization vs. min-max optimization

Qualitatively similar landscape (77)

» Components of critical points «» chain transitive sets

> Avoidance of strict saddles «» avoidance of unstable periodic orbits

Is there a fundamental difference between min and min-max problems?
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Minimization vs. min-max optimization

Qualitatively similar landscape (77)

» Components of critical points «» chain transitive sets X

> Avoidance of strict saddles «» avoidance of unstable periodic orbits 4

Is there a fundamental difference between min and min-max problems?

Non-gradient problems may have spurious invariant sets!

# Spurious == contains no critical points
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Toy example: bilinear problems

Bilinear min-max problems

min max  f(x1,%) = (x1 — b)) A(x2 - by)

x1€X] x2€ X,

Mean dynamics:

561 = —A(Xz — bz) J-Cz = A-r (xl — b1)
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Toy example: bilinear problems

Bilinear min-max problems

min max  f(x1,%) = (x1 — b)) A(x2 - by)

x1€X] x2€ X,

Mean dynamics:

561 = —A(Xz — bz) J-Cz = A-r (xl — b1)

Energy function:

1 2 1 2
E(x) = EHxl =bi|" + Esz = by

Lyapunov property:
dE
n <0 w/equalityifA=A"

== distance to solutions (weakly) decreasing along (MD)
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Periodic orbits

Roadblock: the energy may be a constant of motion

Figure: Hamiltonian flow of f(x1,x2) = x1x2
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Poincaré recurrence

Definition (Poincaré, 1890's)

A system is Poincaré recurrent if almost every orbit returns infinitely close to its starting point infinitely often
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Poincaré recurrence

Definition (Poincaré, 1890's)

A system is Poincaré recurrent if almost every orbit returns infinitely close to its starting point infinitely often

Theorem (M, Papadimitriou, Piliouras, 2018; unconstrained version)

(MD) is Poincaré recurrent in all bilinear min-max problems that admit an equilibrium
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The stochastic case

-10 -05 00 05 10 -10 -05 00 05 10
x x

Figure: Behavior of gradient and extra-gradient methods with stochastic feedback

First-order training methods converge to a (random) periodic orbit
y

# But see also Chavdarova et al., 2019; Hsieh et al,, 2020
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The Kupka-Smale theorem

Systems with the structure of bilinear games are rare:

Theorem (Kupka, 1963)

Let V = C*(R%;R?) be the space of C* vector fields on R? endowed with the Whitney topology. Then the set of
vector fields with a non-trivial recurrent set is meager (in the Baire category sense).

Theorem (Smale, 1963)

For any vector field g € V, the following properties are generic (in the Baire category sense):

> All closed orbits are hyperbolic

> Heteroclinic orbits are transversal (i.e, stable and unstable manifolds intersect transversally)

TLDR: non-attracting periodic orbits are non-generic (they occur negligibly often)

1 MaBnuatikiv
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Convergence to attractors

Attractors ~ natural solution concepts for non-min problems

Theorem (Hsieh et al., 2021)
Assume: S is an attractor of (MD) + step-size conditions (B)

Then:  For every tolerance level a > 0, there exists a neighborhood U of S such that

P(X, convergesto S | Xi eU) >1—«a
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Almost bilinear games

Consider the “almost bilinear” game

min max  f(x1,x2) = x1x2 + €d(x2)
x1€X] X2€X,

where & > 0 and ¢(x) = (1/2)x* - (1/4)x*

Properties:

> Unique critical point at the origin
> Unstable under (MD)

X All RM algorithms attracted to spurious limit cycle from almost all initial conditions

*¢ Hsiehetal, 2021




% Spurious attractors in almost bilinear games

RM algorithms converge to a spurious limit cycle with no critical points

10FT T T T T 1L0F T T T T

0.5

2 00

=05

-10 -05 0.0 0.5 1.0 -10 -05 0.0 0.5 1.0
X1 X1

Figure: Convergence to a spurious attractor. Left: stochastic gradient descent; right: stochastic extra-gradient

EKMA, Tufpa MaBnuatike
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Forsaken solutions

Another almost bilinear game

mi)r{l max e x2) = x12 + e[¢(x1) = ¢(x2) ]

where & > 0 and ¢(x) = (1/4)x* — (1/2)x* + (1/6)x°

Properties:
> Unique critical point near the origin
> Stable under (MD), but not a local min-max

> Two isolated periodic orbits:
> One unstable, shielding critical point, but small

> One stable, attracts all trajectories of (MD) outside small basin

¢ Hsiehetal, 2021



% Forsaken solutions in almost bilinear games

With high probability, all Robbins-Monro (RM) algorithms forsake the game’s unique (local) equilibrium

=15 -10 -0.5 0.0 05 1.0 1.5 -15 -10 -0.5 0.0 05 1.0 1.5

Figure: Convergence to a spurious attractor. Left: stochastic gradient descent; right: stochastic extra-gradient

EKMA, ThAHa MaBnpatikey
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Conclusions

Minimization and min-max optimization problems are fundamentally different:

> Min-max methods may have limit points that are neither stable nor stationary

> Bilinear games are not representative case studies for min-max optimization
> Cannot avoid spurious, non-equilibrium sets with positive probability

*> Different approach needed (mixed-strategy learning, multiple-timescales, adaptive methods...)

Many open questions:
> What about second-order methods?
> Applications to finite games (where bilinear games are no longer fragile)?

> Which equilibria are stable under first-order methods for learning in games?

> ...
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