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Small area estimation (1)

Sample survey are widely used in practice to provide estimates not only 
for the total population of interest but also for a variety of 
subpopulations (domains):

• Geographic domains (area) like regions, municipalities, school 
districts, health service areas, … 

• Socio-demographic domains like specific age-sex-race groups, …
• Economic sectors, firm industry sectors, ...

Small area typically denotes any domain for which the specific sample 
is not large enough to support direct estimates of adequate precision.

Having only a small (possibly empty) sample in a given area, the only 
possible solution to the estimation problem is to borrow information 
from other related data sets.



Small area estimation (2)

Data requirements:
• Survey data: available for the target variable y and for the auxiliary 

variable X, related to Y
• Census/Administrative data: available for X but not for Y

SAE in 3 steps:
1. Use survey data to estimate a model that link Y to X
2. Combine the estimated model parameters with X for out of sample 

units, to form predictions
3. Use these predictions (jointly with the survey data) to estimate the 

target parameters



Business surveys

Characteristics
• Skewed populations
• Likely to include outliers
• Presence of good auxiliary information from registers

Small area estimation for business surveys
• Skewed variables
• Detailed stratification
• Non-negligible sampling fractions/informative sampling
• Large variation in sampling weights

MSE estimates are often very large, we want to reduce them



1. Standard multilevel model + EBLUPs

2. Robust models
• M-regression: robust estimators
• M-quantile regression

• Robust projective/naïve – no outliers in predicted part
• Robust predictive – accounts for some outliers in predicted part

3. Transformations
• EBP approach – with data-driven transformation
• Estimators on log scale

– Require bias-correction for back transformation

Unit-level modelling strategies (1)



Unit-level modelling strategies (2)

4. Models with non-Normal errors
• GB2
• Gamma
• Skew normal
• Mixtures of normal distributions
• Other potential approaches (empirical distribution quantiles, 

GLMMs, …)

… work in progress …



• Including variables predicting selection probabilities in 
model ⇒ sampling ≈ ignorable

• Include sampling weights in models 
• Pseudo EBLUP
• weighted naïve M-quantile
• weighted bias-corrected M-quantile
• Pseudo EBP
• weighted EB (SWEE)
• …

Non-ignorable sampling - compensation strategies



• Example dataset derived from Dutch SBS (survey) and tax 
administrative data (known)

• retail industry
• exclude largest businesses – but a few take-all strata remain

• Two years of tax data
• Year 1 

• Register information for sample selection according to SBS design
• Auxiliary information for model fitting

• Year 2
• Proxy for survey responses
• (±) Whole population known – we assess repeated sampling properties 

of different estimators

Dutch structural business survey (SBS) (Smith et al. 2021) 



SBS sampling design

• Stratified design, with strata defined by a combination of 
NACE1 industrial classification (20 classes in the retail sector) 
and 9 size classes. 

• The largest businesses (in size classes 6–9, with employment 
50 or greater) are completely enumerated. 

• The sample sizes in other strata determined by Neyman
allocation with some additional constraints on 
subpopulations (including for the retailing sector)

• We use the design of the 2009 SBS excluding the completely 
enumerated strata.

• Within strata, samples are selected by SRS without 
replacement. 



Pseudo-SBS dataset
• We obtain:

• Population size N = 63,981, 5 size classes and 20 industries
• Total sample size n = 5,074, with sample sizes per industry varying from 21 

to 769.

• Response variable:  tax-turnover for 2007, tto
• Small areas: 20 industry classes
• Auxiliary variables:

• tax-turnover from 2006, tax1
• industrial classification, ind
• size class, based on the working persons in the business in bands 

1, 2–4, 5–9, 10–19, 20–49, sc
• employment, measured as the number of working persons, wp

• Model for simulations specified as (following Krieg et al., 2012):

( ), 0 1 , 2 , 3 , 4 ,,
1 1i ind i ind i ind i ind ind i indi ind

tto tax wp tax wp u eβ β β β= + + + + × + +β sc



Direct estimators

• Horvitz-Thompson (HT)

• Generalized regression estimator (GREG) 

Using Dutch SBS approach for auxiliary variables:
• tax1 × ind × size class (0-9, 10-49)



Non-robust small area estimators (1)

Based on a two-level random effect model

with industry-specific random effects 
and individual-specific random effects

• EBLUP



Diagnostic plots for 
multilevel linear 
model
(one sample – SBS Data)



Non-robust small area estimators (2)

• EBLUP with individual-level 
variance as function of the size class

• pseudo-EBLUP (You & Rao 2002, Fabrizi et al., 2014)

USE SAMPLING WEIGHTS
Regression coefficients are fitted using the survey weights as well



• Robust EBLUP (Sinha & Rao, 2009) 
• M-regression with random effect
• Huber function                                                applied to the residuals, with 

tuning constant bψ = 1.345, to reduce the outlier effect in the estimation

Note: Robust industry level effect ≈ 0 with the SBS dataset 

• Robust synthetic estimator
M-regression estimation, 
only fixed effects

Robust estimators



Robust projective estimators (1)

• Naïve M-quantile estimator (Chambers & Tzavidis, 2006)
• Define qi s.t.
• In each domain find mean

• Inconsistent. Assumption that all the outliers are observed in the sample, 
so called naïve (Tzavidis et al., 2010) 

• Weighted naïve M-quantile estimator (Fabrizi et al., 2014) 

• Based on a linear model for the M-quantile regression 

Regression coefficients are fitted using the sampling weights
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• Consistent, bias-corrected M-quantile estimator (Chambers & 
Dunstan, 1986)

• Adds a third term to correct for the potential bias at the cost of allowing the 
variance to increase. 

• Weighted bias-corrected M-quantile estimator (Fabrizi et al., 2014) 

Robust projective estimators (2)
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• Robust predictive bias-adjusted M-quantile estimator (Welsh 
& Ronchetti, 1998) 

• Second Huber function, tuning parameter bφ , robust estimate of 
scale of the residuals ω

• bφ codes bias-variance trade-off
• expect bφ > bψ

Robust predictive estimators



Relative Bias (%) of industry estimates  - SBS



Relative RMSE (%) of industry estimates  - SBS



• Dutch SBS data was available for specific research project only
• Need alternative source of population data for evaluation of 

methods

Objectives:
• Assess robust estimation approaches from Smith et al. (2021) 

on a second dataset
• Assess different transformation-based approaches

Faced with a new business dataset, what is the best approach to 
small area estimation?

Further explorations



AIDA dataset (1)
• Multi-year database of Italian businesses (from Bureau van Dijk)

• Information on all Italian companies required to file their accounts (joint-
stock companies, excluding banks, insurance companies and public bodies)

• We extract data similar to SBS 
• retail* businesses in Italy: 36 codes
• auxiliary information from 2018 and target variable from 2020

• Stratified design, Neyman allocation

• We obtain:
• Population size N = 71,568,  5 size classes and 36 industry groups
• Total sample size n = 5,000, with sample 

sizes per industry varying from 12 to 905.

*retail excluding petrol stations



• Response variable:  turnover from 2020, t2020

• Small areas: 36 industry groups
• Auxiliary variables:

• turnover from 2018, t2018

• industrial classification, ind
• size class, based on the working persons in the business in bands 

1, 2–4, 5–9, 10–19, 20–49, sc
• employment, measured as the number of working persons, wp

• Model for simulations
• Reproduced model from Smith et al. (2021) (but only size, not size class)

( )2018 2018
0 1 , 3 , 4 , ,

: β β β β+ + + ×i ind i ind i ind i ind
t wp t wpXβ

AIDA dataset (2)



Diagnostic plots for 
multilevel linear 
model
(one sample – AIDA Data)



Relative Bias (%) of industry estimates  - AIDA



Relative RMSE (%) of industry estimates  - AIDA



• Empirical Best Prediction (EBP) approach by Molina & Rao (2010) 
(Rojas-Perilla et al. 2019) 

• Generate transformed data y*
• Use y* to fit multilevel model and obtain estimates of parameters
• Generate pseudo-populations from original data by repeated sampling of 

residuals from model
• Back transform pseudo-population values and calculate indicator in each

pseudo-population
• Average pseudo-population indicators

Predictions of the target outcome are generated by using the conditional 
predictive distribution of the out-of-sample data given the sample data.
• There is no back-transformation bias 

Transformation estimators (1)



Transformations for EBP

• Linear

• Log transformation: 
log(yij + s)

• Log-shift transformation 
(Yang 1995)  

log(yij + λ)
• λ fitted

• With s deterministic, default is s = 1

• Box-Cox transformation 
(Box & Cox 1964)

• Dual power transformation 
(Yang 2006)
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EBP steps in more details



Transformation estimators (2)

• Kalberg-type synthetic predictor (Chandra & Chambers, 2011)

where

• Model based direct estimator (MBDE) (Chandra & Chambers, 2011)

The weights are function of  



Transformation estimators (3)

• Empirical best (EB) predictor (Berg & Chandra, 2014)

• EB predictor – bias corrected (Berg & Chandra, 2014)

where

see Berg & Chandra (2014) for the formulas for 



Weighted predictors under transformation

• Pseudo-EBP (Guadarrama et al., 2018)
Basic procedure as before, but
• estimates are conditioned on the weighted means;
• parameters are derived from a weighted unit level model (fitted using 

maximum likelihood (Pfeffermann & Sverchkov, 2007), or using the 
method of moments of You & Rao (2002). 

• Weighted EB predictor - SWEE (Zimmermann & Münnich, 2018)
Parameters are derived from a weighted unit level model, adapting You & 
Rao (2002) (as in Pseudo-EBLUP) to log-transformed data.

survey weights are used to obtain these



Diagnostic plots for 
multilevel loglinear
model - with log(x)
(one sample – AIDA Data)



Industry linear log 
(deterministic 
shift)

log shift Box-Cox dual power

…

4751 35.76 20.69 19.31 18.86 19.26

4752 5.06 176167.13 52060.44 54.92 23.67

4753 45.20 35.65 37.28 38.42 37.86

4754 20.38 14.70 13.89 14.10 14.51
…

median (rrmse) 29.50 23.02 19.27 14.36 14.28

mean (rrmse) 37.16 10033.93 3291.47 22.15 17.94

EBP relative RMSEs (%): model with x

Regression model ( )2018 2018
0 1 , 3 , 4 , ,

: β β β β+ + + ×i ind i ind i ind i ind
t wp t wpXβ



Industry linear log 
(deterministic 
shift)

log shift Box-Cox dual power

…

4751 39.54 17.25 17.25 17.44 17.25

4752 8.85 9.66 9.66 10.45 9.66

4753 37.32 20.69 20.69 19.95 20.69

4754 34.27 10.28 10.28 10.49 10.28
…

median (rrmse) 32.85 12.41 12.41 12.54 12.41

mean (rrmse) 39.11 13.17 13.17 13.47 13.17

EBP relative RMSEs (%): model with log(x)

( ) ( )( )2018 2018
0 1 , 3 , 4 ,

,
: log logβ β β β+ + + ×i ind i ind i ind

i ind
t wp t wpXβReplace x by log(x)



Relative Bias (%) of industry estimates  - AIDA



Relative RMSE (%) of industry estimates  - AIDA



Transformations vs Robust models

log shift* dual 
power*

EB predictor
bias 

corrected*

M-quantile 
naïve

weighted 
M-quantile 

naïve

bias-adjusted 
M-quantile    

(bφ = 1)

median (rrmse) 12.41 12.41 12.41 7.31 7.70 9.14

mean (rrmse) 13.17 13.17 13.13 9.46 9.53 9.59

* with log(x) predictor



• Results of simulations on robust estimators with Dutch data 
(Smith et al. 2021) are corroborated with Italian AIDA data

• Robust estimators give substantial rrmse improvement for small areas
• Robust bias-adjusted M-quantile best overall (we need to investigate 

on methods to set tuning constant in real situation)

• Transformation approaches are effective at improving 
estimates, but less good than (best) robust models.

• Tackle third group of estimators based on distributions with 
non-normal errors

Come to the International Conference on Establishment 
Statistics (ICES VII) in Glasgow June 2024 for the next thrilling 
instalment

Conclusions and future work
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