

Unit level small area models for business survey data

Chiara Bocci*, Paul A. Smith°

* Dept. of Statistics, Computer Science, Applications "G. Parenti" **University of Florence, Italy**

° S3RI and Department of Social Statistics & Demography University of Southampton, UK

AUEB - 14 May 2024

Outline

- Small area estimation problem
- Characteristics of business surveys
- Unit level modelling strategies for small area estimation
- Previous research on Dutch structural business survey (SBS) dataset (Smith *et al.* 2021)
 - Robust estimation approaches
- AIDA Italian business dataset
 - Repeatability of robust estimation results
 - Extension to transformation-based approaches
- Conclusions

Small area estimation (1)

Sample survey are widely used in practice to provide estimates not only for the total population of interest but also for a variety of subpopulations (domains):

- Geographic domains (area) like regions, municipalities, school districts, health service areas, ...
- Socio-demographic domains like specific age-sex-race groups, ...
- Economic sectors, firm industry sectors, ...

Small area typically denotes any domain for which the specific **sample is not large enough** to support direct estimates of adequate precision.

Having only a small (possibly empty) sample in a given area, the only possible solution to the estimation problem is to borrow information from other related data sets.

Small area estimation (2)

Data requirements:

- **Survey data**: available for the target variable y and for the auxiliary variable *X*, related to *Y*
- Census/Administrative data: available for X but not for Y

SAE in 3 steps:

- 1. Use survey data to estimate a model that link Y to X
- 2. Combine the estimated model parameters with *X* for out of sample units, to form predictions
- 3. Use these predictions (jointly with the survey data) to estimate the target parameters

Business surveys

Characteristics

- Skewed populations
- Likely to include outliers
- Presence of good auxiliary information from registers
- Small area estimation for business surveys
 - Skewed variables
 - Detailed stratification
 - Non-negligible sampling fractions/informative sampling
 - Large variation in sampling weights

MSE estimates are often very large, we want to reduce them

Unit-level modelling strategies (1)

- 1. Standard multilevel model + EBLUPs
- 2. Robust models
 - M-regression: robust estimators
 - M-quantile regression
 - Robust projective/naïve no outliers in predicted part
 - Robust predictive accounts for some outliers in predicted part
- 3. Transformations
 - EBP approach with data-driven transformation
 - Estimators on log scale
 - Require bias-correction for back transformation

Unit-level modelling strategies (2)

- 4. Models with non-Normal errors
 - GB2
 - Gamma
 - Skew normal
 - Mixtures of normal distributions
 - Other potential approaches (empirical distribution quantiles, GLMMs, ...)

... work in progress ...

Non-ignorable sampling - compensation strategies

 Including variables predicting selection probabilities in model ⇒ sampling ≈ ignorable

- Include sampling weights in models
 - Pseudo EBLUP
 - weighted naïve M-quantile
 - weighted bias-corrected M-quantile
 - Pseudo EBP
 - weighted EB (SWEE)

Dutch structural business survey (SBS) (Smith et al. 2021)

- Example dataset derived from Dutch SBS (survey) and tax administrative data (known)
 - retail industry
 - exclude largest businesses but a few take-all strata remain
- Two years of tax data
 - Year 1
 - Register information for sample selection according to SBS design
 - Auxiliary information for model fitting
 - Year 2
 - Proxy for survey responses
 - (±) Whole population known we assess repeated sampling properties of different estimators

SBS sampling design

- Stratified design, with strata defined by a combination of NACE1 industrial classification (20 classes in the retail sector) and 9 size classes.
- The largest businesses (in size classes 6–9, with employment 50 or greater) are **completely enumerated**.
- The sample sizes in other strata determined by Neyman allocation with some additional constraints on subpopulations (including for the retailing sector)
- We use the design of the 2009 SBS excluding the completely enumerated strata.
- Within strata, samples are selected by SRS without replacement.

Pseudo-SBS dataset

- We obtain:
 - **Population** size N = 63,981, 5 size classes and 20 industries
 - Total **sample** size n = 5,074, with sample sizes per industry varying from 21 to 769.
- Response variable: tax-turnover for 2007, tto
- Small areas: 20 industry classes
- Auxiliary variables:
 - tax-turnover from 2006, tax1
 - industrial classification, ind
 - size class, based on the working persons in the business in bands 1, 2–4, 5–9, 10–19, 20–49, sc
 - employment, measured as the number of working persons, wp
- Model for simulations specified as (following Krieg et al., 2012):

 $tto_{i,ind} = \beta_0 + \beta_1 tax \mathbf{1}_{i,ind} + \beta_2 \mathbf{sc}_{i,ind} + \beta_3 wp_{i,ind} + \beta_4 \left(tax \mathbf{1} \times wp \right)_{i,ind} + u_{ind} + e_{i,ind}$

Direct estimators

• Horvitz-Thompson (HT)

$$\hat{y}_{ind}^{HT} = \sum_{i \in ind \cap s} d_i y_i \qquad d_i = 1 / \pi_i$$

• Generalized regression estimator (GREG)

$$\hat{y}_{ind}^{GREG} = \hat{y}_{ind}^{HT} + \hat{\beta}^{GREG} \left[\mathbf{X}_{ind} - \hat{\mathbf{x}}_{ind}^{HT} \right]$$

Using Dutch SBS approach for auxiliary variables:

• *tax1* × *ind* × *size class* (0-9, 10-49)

Non-robust small area estimators (1)

Based on a two-level random effect model $y = X\beta + Zu + e$

with industry-specific random effects $\mathbf{u} \sim N(\mathbf{0}, \boldsymbol{\Sigma}_u)$ and individual-specific random effects $\mathbf{e} \sim N(\mathbf{0}, \boldsymbol{\Sigma}_e)$

• EBLUP
$$\hat{y}_{ind}^{EBLUP} = \sum_{i \in ind \cap s} y_i + \sum_{i \in ind \cap r} \left(\mathbf{x}_i^T \,\widehat{\boldsymbol{\beta}} + \mathbf{z}_i^T \,\widehat{\mathbf{u}} \right)$$

Diagnostic plots for multilevel linear model

(one sample – SBS Data)

Normal Q-Q Plot Level 1 Residuals

Normal Q-Q Plot Level 2 Residuals

Non-robust small area estimators (2)

- EBLUP with individual-level $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \mathbf{e}$ $\mathbf{u} \sim N(\mathbf{0}, \boldsymbol{\Sigma}_{u})$ variance as function of the size class $\mathbf{e}_{sc} \sim N(\mathbf{0}, \boldsymbol{\Sigma}_{e,sc})$
- pseudo-EBLUP (You & Rao 2002, Fabrizi et al., 2014)

$$\hat{\boldsymbol{\gamma}}_{ind}^{pEBLUP} = \hat{\boldsymbol{\gamma}}_{ind, w} \sum_{i \in s_{ind}} w_{ind, i} \boldsymbol{y}_{ind, i} + \left(\mathbf{X}_{ind} - \hat{\boldsymbol{\gamma}}_{ind, w} \sum_{i \in s_{ind}} w_{ind, i} \mathbf{X}_{ind, i} \right) \hat{\boldsymbol{\beta}}_{w}$$
$$\hat{\boldsymbol{\gamma}}_{ind, w} = \sigma_{u}^{2} / \left(\sigma_{u}^{2} + \sigma_{e}^{2} \delta_{i} \right) \qquad \delta_{i} = \sum_{i \in s_{ind}} \left(\frac{w_{ind, i}}{\sum_{i \in s_{ind}} w_{ind, i}} \right)^{2}$$

USE SAMPLING WEIGHTS

Regression coefficients are fitted using the survey weights as well

Robust estimators

• Robust EBLUP (Sinha & Rao, 2009)

- M-regression with random effect
- Huber function $\psi(a) = a\min(1, b_{\psi} / |a|)$ applied to the residuals, with tuning constant $b_{\psi} = 1.345$, to reduce the outlier effect in the estimation

$$\widehat{y}_{ind}^{REBLUP} = \sum_{i \in ind \cap s} y_i + \sum_{i \in ind \cap r} \left(\mathbf{x}_i^T \,\widehat{\boldsymbol{\beta}}^{\psi,SR} + \mathbf{z}_i^T \,\widehat{\mathbf{u}}^{\psi,SR} \right)$$

<u>Note</u>: Robust industry level effect \approx 0 with the SBS dataset

 Robust synthetic estimator M-regression estimation, only fixed effects

$$\widehat{y}_{h}^{RSYN} = \sum_{i \in h \cap s} y_{i} + \sum_{i \in h \cap r} \mathbf{x}_{i}^{T} \widehat{\boldsymbol{\beta}}^{\psi,M}$$

Robust projective estimators (1)

- Based on a linear model for the **M**-quantile regression $m_q(\mathbf{X}) = \mathbf{X} \boldsymbol{\beta}_a^{\psi}$
 - Naïve M-quantile estimator (Chambers & Tzavidis, 2006)
 - Define q_i s.t. $y_i = \mathbf{x}_i^T \hat{\mathbf{\beta}}_{q_i}^{\psi}$
 - Define q_i s.t. $y_i = \mathbf{x}_i \mathbf{p}_{q_i}^{T}$ In each domain find mean $\overline{q}_{ind} = \frac{1}{n_{ind}} \sum_{i \in ind} q_i$ $\widehat{y}_{ind}^{MQ} = \sum_{i \in ind \cap s} y_i + \sum_{i \in ind \cap r} \mathbf{x}_i^T \widehat{\boldsymbol{\beta}}_{\overline{q}_{ind}}^{\Psi}$
 - Inconsistent. Assumption that all the outliers are observed in the sample, so called **naïve** (Tzavidis et al., 2010)
 - Weighted naïve M-quantile estimator (Fabrizi et al., 2014)

$$\widehat{y}_{ind}^{wMQ} = \sum_{i \in ind \cap s} y_i + \sum_{i \in ind \cap r} \mathbf{x}_i^T \,\widehat{\boldsymbol{\beta}}_{w, \,\overline{q}_{ind}}^{\psi}$$

Regression coefficients are fitted using the **sampling weights**

Robust projective estimators (2)

 Consistent, bias-corrected M-quantile estimator (Chambers & Dunstan, 1986)

$$\hat{y}_{ind}^{MQCD} = \sum_{i \in ind \cap s} y_i + \sum_{i \in ind \cap r} \mathbf{x}_i^T \hat{\boldsymbol{\beta}}_{\overline{q}_{ind}}^{\psi} + \frac{N_{ind} - n_{ind}}{n_{ind}} \sum_{i \in ind \cap s} \left(y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}}_{\overline{q}_{ind}}^{\psi} \right)$$

- Adds a third term to correct for the potential bias at the cost of allowing the variance to increase.
- Weighted bias-corrected M-quantile estimator (Fabrizi et al., 2014)

$$\widehat{y}_{ind}^{wMQCD} = \sum_{i \in ind \cap s} w_i y_i + \left(\sum_{i \in ind \cap U} \mathbf{x}_i^T - \sum_{i \in ind \cap s} w_i \mathbf{x}_i^T\right) \widehat{\boldsymbol{\beta}}_{w, \overline{q}_{ind}}^{\psi}$$

Robust predictive estimators

Robust predictive bias-adjusted M-quantile estimator (Welsh & Ronchetti, 1998)

$$\widehat{y}_{ind}^{MQWR} = \sum_{i \in ind \cap s} y_i + \sum_{i \in ind \cap r} \mathbf{x}_i^T \widehat{\boldsymbol{\beta}}_{\overline{q}_{ind}}^{\psi} + \frac{N_{ind} - n_{ind}}{n_{ind}} \sum_{i \in ind \cap s} \omega_{ind}^{MQ} \phi \left\{ \frac{\left(y_i - \mathbf{x}_i^T \widehat{\boldsymbol{\beta}}_{\overline{q}_{ind}}^{\psi} \right)}{\omega_{ind}^{MQ}} \right\}$$

- Second Huber function, tuning parameter b_{φ} , robust estimate of scale of the residuals ω
 - b_{φ} codes bias-variance trade-off
 - expect $b_{\varphi} > b_{\psi}$

Relative Bias (%) of industry estimates - SBS

Relative bias (%)

Relative RMSE (%) of industry estimates - SBS

Direct HT -	•	•••••	• •ו •	• • •		•		
Direct GREG -	• •	* •• ••	••					
EBLUP -	•==	••••• 😕	• ••	• •		•		
EBLUP var=f(sc) -		(•• •	•					
pseudo-EBLUP -	•===	•ו •••	••					
Robust synthetic –		•						
MQ -		•						
MQCD -	• =•		•× • •	,			• •	••
$MQWR(b_{\phi}=1) \ -$		•						
$MQWR(b_{\phi} = 2)$ –		••						
$MQWR(b_{\phi} = 3) -$		••						
weighted MQ -		•						
weighted MQCD -	••••••	*** ** • •	•	•				
					I			
	0	5	10	15	20	25	30	35

Relative rmse (%)

Further explorations

- Dutch SBS data was available for specific research project only
- Need alternative source of population data for evaluation of methods

Objectives:

- Assess robust estimation approaches from Smith *et al*. (2021) on a second dataset
- Assess different transformation-based approaches

Faced with a new business dataset, what is the best approach to small area estimation?

AIDA dataset (1)

- Multi-year database of Italian businesses (from Bureau van Dijk)
 - Information on all Italian companies required to file their accounts (jointstock companies, excluding banks, insurance companies and public bodies)
- We extract data similar to SBS
 - retail* businesses in Italy: 36 codes
 - auxiliary information from 2018 and target variable from 2020
- Stratified design, Neyman allocation
- We obtain:
 - **Population** size N = 71,568, 5 size classes and 36 industry groups
 - Total **sample** size n = 5,000, with sample sizes per industry varying from 12 to 905.

*retail excluding petrol stations

AIDA dataset (2)

- Response variable: turnover from 2020, *t*²⁰²⁰
- Small areas: 36 industry groups
- Auxiliary variables:
 - turnover from 2018, *t*²⁰¹⁸
 - industrial classification, ind
 - size class, based on the working persons in the business in bands 1, 2–4, 5–9, 10–19, 20–49, sc
 - employment, measured as the number of working persons, wp
- Model for simulations
 - Reproduced model from Smith et al. (2021) (but only size, not size class)

 $\mathbf{X}\boldsymbol{\beta}:\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1}t_{i,ind}^{2018}+\boldsymbol{\beta}_{3}wp_{i,ind}+\boldsymbol{\beta}_{4}\left(t_{i,ind}^{2018}\times wp\right)_{i,ind}$

Diagnostic plots for multilevel linear model

Normal Q-Q Plot Level 1 Residuals

(one sample – AIDA Data)

Normal Q-Q Plot Level 2 Residuals

Relative Bias (%) of industry estimates - AIDA

Relative bias (%)

Relative RMSE (%) of industry estimates - AIDA

I							
Direct GREG -	• ••••• ••••	× ····	• •				
EBLUP -	••••		•× •••	•• •• •	• •	•	
EBLUP var=f(sc) -	• • • • • • •		-				
pseudo-EBLUP –	*****	••••••	•				
Robust synthetic –	•••• an 🐝		• •				
Robust EBLUP -	• •• • •• •		•				
MQ -		••••					
MQCD -			••••				•
MQWR($b_{\phi} = 1$) –		• •					
MQWR($b_{\phi} = 2$) –		• ••					
MQWR($b_{\phi} = 3$) –							
weighted MQ -	• • • • • • • • •	••••					
weighted MQCD		•••					
	1	I	I	I	I	I	
	0	20	40	60	80	100	120

Relative rmse (%)

Transformation estimators (1)

- Empirical Best Prediction (EBP) approach by Molina & Rao (2010) (Rojas-Perilla et al. 2019)
 - Generate transformed data y*
 - Use y* to fit multilevel model and obtain estimates of parameters
 - Generate pseudo-populations from original data by repeated sampling of residuals from model
 - Back transform pseudo-population values and calculate indicator in each pseudo-population
 - Average pseudo-population indicators

Predictions of the target outcome are generated by using the conditional predictive distribution of the out-of-sample data given the sample data.

There is no back-transformation bias

Transformations for EBP

- Linear
- Log transformation:
 log(y_{ij} + s)
- Log-shift transformation (Yang 1995)

 $\log(y_{ij} + \lambda)$

• λ fitted

• With s deterministic, default is s = 1

 Box-Cox transformation (Box & Cox 1964)

$$\begin{cases} \frac{\left(y_{ij}+s\right)^{\lambda}-1}{\lambda} & \text{if } \lambda \neq 0\\ \log\left(y_{ij}+s\right) & \text{if } \lambda = 0 \end{cases}$$

 Dual power transformation (Yang 2006)

$$\begin{bmatrix} \left(y_{ij} + s \right)^{\lambda} - \left(y_{ij} + s \right)^{-\lambda} \\ 2\lambda \end{bmatrix} \quad \text{if } \lambda \neq 0$$
$$\log(y_{ij} + s) \quad \text{if } \lambda = 0$$

EBP steps in more details

- 1. select a transformation, fitting the shift parameter to obtain $\hat{\lambda}$ if necessary, and obtain $y_i^* = T_{\hat{\lambda}}(y_i)$
- 2. use the transformed data in the unit level model (5) to estimate $\hat{\boldsymbol{\beta}}^*$, and the variance components $\hat{\sigma}_u^2$ and $\hat{\sigma}_e^2$; calculate $\hat{\gamma}_{ind} = \hat{\sigma}_u^2 / (\hat{\sigma}_u^2 + n_{ind}^{-1} \hat{\sigma}_e^2)$
- 3. for l in 1, ..., L
 - take random draws v_{ind} from $N\left(0, (1 \hat{\gamma}_{ind})\hat{\sigma}_u^2\right)$ for each value of *ind* included in the sample, or from $N\left(0, \hat{\sigma}_u^2\right)$ for any out-of-sample values of *ind*
 - take random draws of e_i from $N(0, \hat{\sigma}_e^2)$ for each value of i
 - obtain pseudopopulation l as $y_i^{*(l)} = \mathbf{x}_i^T \hat{\boldsymbol{\beta}}^* + \hat{u}_{ind}^* + v_{ind} + e_i^*$ when *ind* is included in the sample, choosing *ind* such that $i \in ind$, and as $y_i^{*(l)} = \mathbf{x}_i^T \hat{\boldsymbol{\beta}}^* + v_{ind} + e_i^*$ when *i* belongs to an out-of-sample value of *ind*
 - back-transform the pseudopopulation values to obtain $y_i^{(l)}$
 - calculate the estimate of interest for each *ind* with pseudopopulation l, $\hat{y}_{ind}^{(l)}$

4. take the average of the statistic of interest for each *ind* over the *l* replicates, $\hat{y}_{ind}^{EBP} = \frac{1}{L} \sum \hat{y}_{ind}^{(l)}$.

Transformation estimators (2)

• Kalberg-type synthetic predictor (Chandra & Chambers, 2011)

$$\begin{split} \hat{y}_{ind}^{SYN-EP} &= \sum_{i \in ind \cap s} y_i + \sum_{i \in ind \cap r} \left(\hat{c}_i^{SYN-EP} \right)^{-1} exp\left(x_i^{\mathrm{T}} \hat{\boldsymbol{\beta}} + \frac{\hat{\sigma}_u^2 + \hat{\sigma}_e^2}{2} \right) \\ \text{where} \quad \hat{c}_i^{SYN-EP} &= exp\left[\frac{1}{2} x_i^{\mathrm{T}} \hat{V}(\hat{\boldsymbol{\beta}}) x_i + \frac{1}{4} \hat{V}(\hat{\sigma}_u^2 + \hat{\sigma}_e^2) \right] \end{split}$$

• Model based direct estimator (MBDE) (Chandra & Chambers, 2011)

$$\hat{y}_{ind}^{MBD} = \sum_{i \in ind \cap s} w_i^{MBD} y_i \quad \text{ The weights are function of } \ \hat{y}_{ind}^{SYN-EP}$$

Transformation estimators (3)

• Empirical best (EB) predictor (Berg & Chandra, 2014)

$$\hat{y}_{ind}^{EB} = \sum_{i \in ind \cap s} y_i + \sum_{i \in ind \cap r} \exp\left\{x_i^{\mathrm{T}}\hat{\boldsymbol{\beta}} + \hat{\gamma}_{ind}\left(\frac{1}{n_{ind}}\sum_{i \in ind \cap s} \log(y) - x_s^{\mathrm{T}}\hat{\boldsymbol{\beta}}\right) + \frac{1}{2}\hat{\sigma}_e^2\left(\frac{\hat{\gamma}_{ind}}{n_{ind}} + 1\right)\right\}$$

• EB predictor – bias corrected (Berg & Chandra, 2014)

$$\hat{y}_{ind}^{EBbc} = \sum_{i \in ind \cap s} y_i + \sum_{i \in ind \cap r} \left(\hat{c}_i^{EB}\right)^{-1} \hat{y}_{ind}^{EB}$$

where $\hat{c}_{i}^{EB} = \exp\left[\frac{1}{2}\left(\hat{\mathbf{a}}_{i} + \hat{c}_{1,ind}\hat{V}(\hat{\sigma}_{e}^{2}) + \hat{c}_{2,ind}\hat{V}(\hat{\sigma}_{u}^{2}) + 2\hat{c}_{3,ind}\hat{Cov}(\hat{\sigma}_{e}^{2}, \hat{\sigma}_{u}^{2})\right)\right]$

see Berg & Chandra (2014) for the formulas for $\hat{\mathbf{a}}_i$, $\hat{c}_{1,ind}$, $\hat{c}_{2,ind}$ and $\hat{c}_{3,ind}$

Weighted predictors under transformation

• Pseudo-EBP (Guadarrama et al., 2018)

Basic procedure as before, but

- estimates are conditioned on the weighted means;
- parameters are derived from a weighted unit level model (fitted using maximum likelihood (Pfeffermann & Sverchkov, 2007), or using the method of moments of You & Rao (2002).

• Weighted EB predictor - SWEE (Zimmermann & Münnich, 2018)

Parameters are derived from a weighted unit level model, adapting You & Rao (2002) (as in Pseudo-EBLUP) to log-transformed data.

$$\hat{y}_{ind}^{SWEE} = \sum_{i \in ind \cap s} y_i + \sum_{i \in ind \cap r} \exp\left[\mathbf{x}_i^{\mathrm{T}} \hat{\boldsymbol{\beta}}^{*SWEE} + \tilde{u}_{ind}^* + \frac{1}{2} \hat{\sigma}_e^{*2} \left(\hat{\gamma}_{ind}^w \delta_{ind}^2 + 1\right)\right]$$

survey weights are used to obtain these

Diagnostic plots for multilevel loglinear model - with log(x)

(one sample – AIDA Data)

EBP relative RMSEs (%): model with x

Industry	linear	log (deterministic shift)	log shift	Box-Cox	dual power
4751	35.76	20.69	19.31	18.86	19.26
4752	5.06	176167.13	52060.44	54.92	23.67
4753	45.20	35.65	37.28	38.42	37.86
4754	20.38	14.70	13.89	14.10	14.51
median (rrmse)	29.50	23.02	19.27	14.36	14.28
mean (rrmse)	37.16	10033.93	3291.47	22.15	17.94

Regression model

$$\mathbf{X}\boldsymbol{\beta}:\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1}t_{i,ind}^{2018}+\boldsymbol{\beta}_{3}w\boldsymbol{p}_{i,ind}+\boldsymbol{\beta}_{4}\left(t_{i,ind}^{2018}\times w\boldsymbol{p}\right)_{i,ind}$$

EBP relative RMSEs (%): model with log(x)

Industry	linear	log (deterministic shift)	log shift	Box-Cox	dual power
4751	39.54	17.25	17.25	17.44	17.25
4752	8.85	9.66	9.66	10.45	9.66
4753	37.32	20.69	20.69	19.95	20.69
4754	34.27	10.28	10.28	10.49	10.28
median (rrmse)	32.85	12.41	12.41	12.54	12.41
mean (rrmse)	39.11	13.17	13.17	13.47	13.17

Replace x by log(x) $\mathbf{X}\boldsymbol{\beta}: \beta_0 + \beta_1 \log(t_{i,ind}^{2018}) + \beta_3 w p_{i,ind} + \beta_4 \left(\log(t_{i,ind}^{2018}) \times w p\right)_{i,ind}$

Relative Bias (%) of industry estimates - AIDA

Relative RMSE (%) of industry estimates - AIDA

Direct HT -	•====	• • •				
EBLUP -	•••••	œ∞ <mark>¥</mark> ··· œ •·	• • •			
EBP Lin -	•••••		•••			
EBP Log - with log(x) -		•				
EBP Log-Shift - with log(x) -		•				
EBP Box-Cox - with log(x) -		••				
EBP Dual - with log(x) -		•				
Karlberg-Type - with log(x) -			•			
EB - with log(x) -		• •				
EBbc - with log(x) -		• •				
MBDE - with log(x) -	• • • • • • • • • • • • • • • • • • • •	• * • •	•	•	•	•
pEBP Lin -		• •				
pEBP Log - with log(x) -		• ••				
pEBP Log-Shift - with log(x) -		• ••				
pEBP Box-Cox - with log(x) -		•••				
pEBP Dual - with log(x) -		• ••				
SWEE - with log(x) -	• = = = ₩	••• • •				
	L					
	0	50	100	150	200	250
	Belative rmse (%)					

Transformations vs Robust models

	log shift*	dual power*	EB predictor bias corrected*	M-quantile naïve	weighted M-quantile naïve	bias-adjusted M-quantile (bφ = 1)	
median (rrmse)	12.41	12.41	12.41	7.31	7.70	9.14	
mean (rrmse)	13.17	13.17	13.13	9.46	9.53	9.59	
					III IN I		

* with log(x) predictor

Conclusions and future work

- Results of simulations on **robust estimators** with Dutch data (Smith et al. 2021) are corroborated with Italian AIDA data
 - Robust estimators give substantial rrmse improvement for small areas
 - **Robust bias-adjusted M-quantile** best overall (we need to investigate on methods to set tuning constant in real situation)
- **Transformation** approaches are effective at improving estimates, but less good than (best) robust models.
- Tackle third group of estimators based on distributions with non-normal errors

 Come to the International Conference on Establishment Statistics (ICES VII) in Glasgow June 2024 for the next thrilling instalment

References

- Berg, E. & Chandra, H. (2014) Small area prediction for a unit-level lognormal model. Computational Statistics & Data Analysis 78 159–175
- Box, G.E.P. & Cox, D.R. (1964) An analysis of transformations (with discussion). Journal of the Royal Statistical Society, Series B 26 211–252
- Chandra, H. & Chambers, R. (2011) Small area estimation under transformation to linearity. Survey Methodology 37 39-51
- Guadarrama, M., Molina, I., & Rao, J.N.K. (2018). Small area estimation of general parameters under complex sampling designs. *Computational Statistics & Data Analysis* **121** 20–40
- Pfeffermann, D. & Sverchkov, M. (2007). Small-area estimation under informative probability sampling of areas and within the selected areas. *Journal of the American Statistical Association* **102**1427–1439
- Rojas-Perilla, N., Pannier, S., Schmid, T., & Tzavidis, N. (2020) Data-driven transformations in small area estimation. *Journal of the Royal Statistical Society, Series A* **183** 121–148
- Smith, P.A., Bocci, C., Tzavidis, N., Krieg, S. & Smeets, M.J.E. (2021) Robust estimation for small domains in business surveys. *Journal of the Royal Statistical Society, Series* C **70** 312–334
- Yang, L. (1995) Transformation-density estimation. PhD Thesis. University of North Carolina, Chapel Hill
- Yang, Z. (2006) A modified family of power transformations. Economics Letters 92 14–19
- You, Y.. & Rao, J. (2002). A pseudo-empirical best linear unbiased prediction approach to small area estimation using survey weights. *Canadian Journal of Statistics* **30** 431–439
- Zimmermann, T. & Münnich, R.T. (2018). Small area estimation with a lognormal mixed model under informative sampling. Journal of Official Statistics **34** 523–542

Your questions...

chiara.bocci@unifi.it