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Undirected graphical models

Let X = (X 1, . . . ,X p) be a random vector.

Let G = (V,E) be an undirected graph, where V = {1, . . . , p} is the

set of nodes and E ⊆ {(i , j) : i , j ∈ V, i 6= j} is the set of edges.

Graphical models (GM) describe the conditional independencies (CI)

among X 1, . . . ,X p :

(i , j) /∈ E ⇐⇒ X i X j |X−(i,j),

where X−(i,j) = {X k : k 6= i , j}.



Graphical models (GM)

(1, 2) /∈ E ⇐⇒ X 1 X 2|{X 3,X 4,X 5}.

In practice: E is unknown

⇒ Aim: Estimate E based on a random sample from X .



Gaussian graphical models (GGM)

Let X = (X 1, . . . ,X p) ∼ N(0,Σ). Let Θ = Σ−1 be the precision

matrix. Then

X i X j |X−(i,j) ⇐⇒ θij = 0. (1)

where θij is the (i , j)th element of Θ.

Estimating a GGM ⇔ estimating the zero entries of Θ

(i , j) /∈ E ⇐⇒ θij = 0. (2)

Regression-based approach or neighborhood selection (Meinshausen

and Buhlmann (2006), Peng et al. (2009)).

glasso/penalized maximum likelihood approach (Lasso, Yuan and Li

(2007), SCAD and the adaptive lasso penalty (Lam and Fan, 2009),

Dantzig selector (Cai et al., 2011) and hard-thresholding (Bickel and

Levina, 2008)).



Gaussian graphical models

Advantage of GGM: The equivalence

(i , j) /∈ E ⇐⇒ θij = 0,

that encodes conditional independence by the precision matrix.

Disadvantage of GGM: The Gaussian assumption is very restrictive.

For example,

- The data are skewed.

- There are nonlinear or heteroscedastic relations among the data.

⇒ We need more flexibility



Non-gaussian graphical models

Liu et al. (2009) and Xue and Zou (2012) relaxed the marginal

Gaussian assumption using marginal copula transformations

Voorman et al. (2004) imposed a generalized additive model

between each node and its neighboring nodes.

Li et al. (2014) and Lee et al. (2016a) developed a nonparametric

GM by replacing conditional independence with additive conditional

independence (ACI).

ACI satisfies the axioms of a semi-graphoid (Pearl, Geiger, and

Verma, 1989), shared by conditional independence and the notion of

separation

→ ACI can be used as an alternative criterion to construct a graph.

They defined several operators on additive Hilbert spaces that

characterize ACI and applied hard-thresholding to determine the

edges of the graph.



Graphical models for functional data

Many applications, particularly in medical applications such as fMRI

and EEG, produce multivariate functional data, where each sampling

unit is modelled as a realization of a stochastic process varying over

a time interval T ⊂ R, X (t) = (X 1(t), . . . ,X p(t)), t ∈ T .

Problem: Construct functional graphical models, whose observations

on the vertices are random functions.

Goal: Represent statistical dependencies between random functions

in the form of a network.



Toy example: Functional graphical models

Left: Data, n = 100 observations of X j
i (t) for j = 1, . . . , 9 nodes.

Right: FGM of p = 9 nodes/functions.

(1, 9) /∈ E ⇐⇒ X 1 X 9|X−(1,9)

Picture taken from Qiao et al (2018). Functional graphical models.

Aim: Estimate E based on the data X j
i , j = 1, . . . , p, i = 1, . . . 100.



Motivation - EEG data

Data: 77 alcoholic subjects and 45 controls (UCI Mach. learn.

repos.)

Figure: 64 electrodes are placed on the subject’s scalp.

By the each electrode, EEG brain signals are recorded over time.

Aim: Characterise the dependence structure among the electrodes

for the two groups of subjects.



Functional Gaussian graphical models (FGGM)

Qiao et al. (2018) proposed a functional Gaussian graphical model

(FGGM) where X is multivariate Gaussian stochastic process.

They expand each X i as a Karhunen-Loeve expansion.

Extract the first mn functional principal scores to form the Gaussian

random vector, ξ = (ξ1, . . . , ξp) ∈ Rpmn with the block precision

matrix Θn = (Θij
n)1≤i,j≤p = Σ−1

n ∈ Rpmn×pmn (inverse covariance

matrix).

Then, under the Gaussian assumption

X i X j |X−(i,j) ⇐⇒ Θij

n = 0. (3)

Hence, under the Gaussian assumption,

(i , j) /∈ En ⇐⇒ Θij

n = 0. (4)

Developed group-lasso penalized maximum likelihood estimation

method which encourages blockwise sparsity of Θn.

The FGGM is a generalization of the GGM (Yuan and Lin, (2006))

to the functional setting.



Functional Gaussian graphical models (FGGM)

Qiao et al. (2018) showed that the FGGM can also be represented

as a multivariate linear regression model with respect to the scores,

ξ i

q =
p∑
j 6=i

mn∑
r=1

B ij

qrξ
j

r + εiq, i ∈ V, q = 1, . . . ,mn, (5)

such that (εiq)1≤q≤mn is uncorrelated with (ξ j
r)1≤r≤mn , i 6= j if and only if

B ij

n = −(Θii

n)
−1Θij

n , (i , j) ∈ V × V, i 6= j , (6)

where B ij
n = (B ij

qr)1≤q,r≤mn .

Hence, under the Gaussian assumption the conditional relationships

between nodes i and j are linear.

Estimation of FGGM ⇔ Estimation of the sparsity structure of B ij
n .

(i , j) /∈ En ⇐⇒ B ij
n = 0 ⇐⇒ Θij

n = 0.



Nonparametric functional graphical models

Li and Solea (2018) developed a nonparametric FGM by extending

ACI to its functional version, FACI, and proposing the functional

additive precision operator (FAPO) to characterise FACI and also the

graph.

Solea and Li (2020) introduced the functional copula Gaussian

distribution and they used it to develop a nonparametric FGM.



Nonparametric functional graphical models

Our objectives:

Construct an alternative nonparametric graphical model for random

functions.

Remove the linearity assumption in FGGM by replacing the

conditional linear relationships B ij
qrξ

j
r among the scores with additive

relationships f ij
qr (ξ

j
r).

Develop concentration bounds for the resulting estimates at the

high-dimensional setting.

Construct brain networks based on EEG data.



Methodology

For each j = 1, . . . , p, let X j ∈ L2(T ) such that E‖X i‖2 <∞, where

L2(T ) denotes the space of all square-integrable real-valued

functions on T with the common inner product.

Without loss of generality, we assume µXi (t) = E (X i(t)) = 0 for all

t ∈ T and for all i = 1, . . . , p.

For each (i , j) ∈ V × V, we define the autocovariance operator

between the functions X i and X j as

ΣXi X j (f )(t) =

∫
T

f (s)σXi X j (s, t)ds, f ∈ L2(T ),

where σXi X j (s, t) = cov(X i(s),X j(t)) = E (X i(s)X j(t)) is the

cross-covariance function between X i and X j .



Karhunen-Loeve expansion

Then each X j ∈ L2(T ) can be represented by its Karhunen-Loève

expansion

X j =
∑

r∈N

√
λj

rξ
j
r φ

j
r , j = 1, . . . , p.

ξ j
r are called the scores and they are uncorrelated random variables

with E (ξ j
r) = 0, var(ξ j

r) = 1,

{(λj
r , φ

j
r) : r = 1, 2, . . .} are eigenvalues and orthogonal

eigenfunctions of ΣXj X j .

We assume the scores are independent and they take values in the

closed and bounded interval e.g [−1, 1].



Additive function-on-function model

Definition 1

A vector of random functions X follows the function-on-function additive

model if for each pair (i , j) ∈ V × V there exists a sequence of smooth

functions f ij = {f ij
qr : q, r ∈ N} defined on R with E [f ij

qr (ξ
j
r)] = 0, q, r ∈ N,

such that

E [ξ i

q|{ξ j

r , j 6= i}] =
∑p

j 6=i

∑∞
r=1
f ij
qr (ξ

j
r) (7)

Our model can be regarded as the nonparametric and additive

version of the FGGM.

Extends the model of Voorman et al. (2013) to the functional

setting.



Additive functional graphical model

Definition 2

A vector of random functions X is said to follow an additive functional

graphical model (AFGM) with respect to an undirected graph G = (V,E)

if and only if X is a function-on-function additive model of the form (7)

and

(i , j) /∈ E ⇔ Xi Xj|X−(i,j).

The definition implies

E = {(i, j) ∈ V × V : i 6= j, f ij

qr 6= 0 for some q, r ∈ N}.



Additive functional graphical model

Since each random function is infinite-dimensional, some type of

regularisation is needed.

We truncate the Karhunen-Loève expansion at a finite number of

principal components mn

E [ξ i

q|{ξ j

r , j 6= i}] =
∑p

j 6=i

∑mn

r=1
f ij
qr (ξ

j
r),

where mn →∞ as n→∞.

Then, our goal is to estimate the truncated edge set

En = {(i , j) ∈ V × V : i 6= j , f ij

qr 6= 0 for some q, r = 1, . . . ,mn}



Estimation

Let ξ̂ i
ur , u = 1, . . . , n, r = 1, . . . ,mn, i ∈ V be the estimated scores.

Under some smoothness conditions, the additive functions f ij
qr can be

approximated by linear combinations of B-splines functions

f ij
qr (x) ≈

∑kn

k=1
hk(x)β ij

qrk , q, r = 1, . . . ,mn, where kn →∞.

Then

f ij
qr = 0 ⇔ ‖β ij

qr‖2
2 = 0,

where ‖ · ‖2 denotes the Euclidean norm of

β ij
qr = (β ij

qr1, . . . , β
ij
qrkn

)T ∈ Rkn , q, r = 1, . . . ,mn.

Let B ij = (β ij
qr)1≤q≤mn,1≤r≤mn ∈ Rknmn×mn , then

(i , j) /∈ En ⇔ ‖Bij‖F = 0 for all i 6= j ,

where ‖ · ‖F is the Frobenious norm.

Inference of En ⇔ Inference of sparsity structure of the spline

coefficient matrix B i = (B ij , i 6= j) ∈ R(p−1)knmn×mn .



Estimation procedure

Estimate B i by solving, separately for each i ∈ V, a penalized

additive regression of each node on all others (analog of

neighborhood selection)

P̂Li(B, ξ̂) =
1

2n
‖ξ̂ i − H̃n(ξ̂

−i)B i‖2

F + λn

∑p

j 6=i
‖B ij‖F , (8)

where H̃n(ξ̂
−i) ∈ Rn×(p−1)knmn design matrix of the center B-splines

functions and B i = (B ij , i 6= j) ∈ R(p−1)knmn×mn coefficient regression

matrix.

Optimization is done by distance convex programming techniques.

Given B̂ i
n as the solution of

B̂ i

n = argmin{P̂Li(B
i , ξ̂) : B i ∈ R(p−1)knmn×mn}.

Estimate the set En by

Ên = {(i , j) ∈ V × V : i 6= j , ‖B̂ ij

n ‖F > 0 or ‖B̂ ji

n ‖F > 0}.



Algorithm

We summarize the algorithm below

1 Implement FPCA to obtain the estimated scores ξ̂ i
ur of each

observation X i
u . Transform the scores into the range [−1, 1] using a

monotone transformation. Choose mn so that at least 90% of the

total variation is explained.

2 For a given λn and for each i ∈ V solve the optimisation problem

using, for example, distance convex programming techniques (e.g

FISTA), to find a sparse estimate of B i
n.

3 Declare that there is an edge between node i and node j if and only

if either ‖B̂ ij
n‖2

F or ‖B̂ ji
n‖2

F are not zero.



Theoretical properties

We develop model selection consistency of Ên assuming

Random functions are fully observed for all t

(mn, pn, kn) are allowed to grow as a function of n.

The true population matrix B∗imn
= (B∗i1mn

, . . . ,B∗ii−1
mn

,B∗ii+1
mn

, . . . ,B∗ipmn
),

with B∗ijmn
= {β∗ijqrk : 1 ≤ q, r ≤ mn, k ∈ N} is defined by

B∗imn
= argminβij

qrk ,1≤q,r≤mn,k∈N

{∑mn

q=1
E
(
ξ i
q −
∑p

j 6=i

∑mn

r=1

∑∞
k=1

h̃k(ξ
j
r)β

ij
qrk

)2}
,

where h̃k(ξ
j
r) = hk(ξ

j
r)− E (hk(ξ

j
r)).



Theoretical properties

Let B∗in = (B∗i1mnkn
, . . . ,B∗ii−1

mnkn
,B∗ii+1

mnkn
, . . . ,B∗ipmnkn

) ∈ R(p−1)knmn×mn denote

the true truncated population matrix.

The true truncated neighbourhood Ni
n of each node i ∈ V by

Ni

n = {j ∈ V \ {i} : ‖B∗ijmnkn
‖F > 0}.

The true truncated edge set En

En = {(i , j) ∈ V × V : i 6= j , i ∈ Nj

n or j ∈ Ni

n}.



Theoretical properties

Let

f ij

qr (ξ
j

r) =
∑∞

k=1
β∗ijqrkhk(ξ

j
r) =

∑∞
k=1
β∗ijqrk h̃k(ξ

j
r).

We obtain from (7) the representation

ξ i

q =
∑

j∈Ni
n

∑mn

r=1
f ij
qr (ξ

j
r) + εiq, q = 1, . . . ,mn, i = 1, . . . , p,

where εq are errors.

The best approximation (in the least squares sense) of

E [ξ i
q|{ξ j

r , j 6= i}] is an additive function of the scores in the set of

neighbours Ni
n of the node i only.



Theoretical properties

We introduce the matrices

Σ∗
Ni

nNi
n

= E
(
H̃(ξNi

n )H̃(ξNi
n )T

)
∈ Rni knmn×ni knmn (9)

and

Σ∗
ξj Ni

n
= E

(
H̃(ξ j)TH̃(ξNi

n )
)
∈ Rknmn×ni knmn , (10)

where ni is the cardinality of Ni
n and

H̃(ξNi
n )T = (H̃(ξ j), j ∈ Ni

n) ∈ Rniknmn , H̃(ξ j) = (h̃T(ξ j

r))1≤r≤mn ∈ Rknmn



Theoretical assumptions

Standard assumptions for the eigenvalues of covariance operators.

1. (i) There exist positive constants d0, d1 and d2 such that

d0r
−β ≤ λi

r ≤ d1r
−β, λi

r − λi

r+1 ≥ d−1

2 r−1−β for r ≥ 1,

and for some β > 1.

(ii) The number of principal component scores mn satisfies mn � nα

for some constant α ∈ [0, 1
2+3β ),

where an � bn represents A ≤ infn| anbn | ≤ supn| anbn | ≤ B, for A > 0 and

B > 0.



Theoretical assumptions

The next two conditions refer to the smoothness of the functions f ij
qr .

Let l be a nonnegative integer, and let ρ ∈ (0, 1] be such that

d = l + ρ > 0.5.

Define F l,ρ, the Hölder space of functions f : [−1, 1]→ R whose

lth derivative exists and satisfies a Lipschitz condition of order ρ

‖f ‖∞ = supx∈[−1,1]|f (x)| ≤ M for some M > 0

2. f ij
qr ∈F l,ρ and E [f ij

qr (ξ
j
ur)] = 0, for all q, r = 1, . . . ,mn and

(i , j) ∈ V × V.

3. The joint density function, say pj , of the random vector

ξ j = (ξ j
1, . . . , ξ

j
mn

)T is bounded away from zero and infinity on

[−1, 1]mn for every j = 1, . . . , p.



Theoretical assumptions

Assumptions to show model selection consistency for the lasso

4. Sub-gaussian tails There exists a constant C > 0 such that

P(|εiq| > x) ≤ 2 exp(−Cx 2) for all x ≥ 0 and q = 1, . . . ,mn, i ∈ V.

5. Sparsity ni = o(p) for all i ∈ V, and there exists a constant θ > 0

such that for all i ∈ V ∑
j∈Ni

n
‖B∗ijmnkn

‖F < θ.

6. Bounded eigenspectrum The minimum eigenvalue Λmin(Σ∗
Ni

nNi
n
) of the

matrix Σ∗
NiNi defined in (9) satisfies

Λmin(Σ∗
Ni

nNi
n
) > Cmin. (11)

for some constant Cmin > 0.

7. Irrepresentable condition There exists a constant 0 < η ≤ 1 such

that

max
j /∈Ni

n

‖Σ∗
ξj Ni

n
(Σ∗

Ni
nNi

n
)−1‖F ≤

1− η√
ni
. (12)



Consistency of the Ni
n

Theorem

If assumptions 1-7 are satisfied and the regularization parameter λn

satisfies for all i

nim3/2
n

k d
n

∑
j∈Ni

n
‖B∗ijmnkn

‖F
. λn . (ni)−3/2(b∗in )3(

∑
j∈Ni

n
‖B∗ijmnkn

‖F)−2, (13)

where b∗in = minj∈Ni
n
‖B∗ijmnkn

‖F . Then,

P
(

N̂i

n 6= Ni

n

)
. exp

(
− C1

n1−α(2+3β)(λn

∑
j∈Ni

n
‖B∗ijmnkn

‖F)2

nim2
nk

4
n

+ 2 log(pmnkn)
)
,

where C1 > 0.



Consistency of the En

Corollary

If the assumptions of Theorem 1 are satisfied, we have for a positive

constant C1 > 0

P(Ên 6= En) . exp
(
−C1

n1−α(2+3β)(λn minp
i=1

∑
j∈Ni

n
‖B∗ijmnkn

‖F)2

pm2
nk

4
n

+2 log(pmnkn)
)
.



Sketch of the proof

1 We show that if Assumptions (6) and (7) hold, then with high

probability, the assumptions hold also for the corresponding sample
matrices

Σn

Ni
nNi

n
=

1

n
H̃n(ξ

Ni
n )H̃T

n (ξNi
n ), Σn

ξj Ni
n

=
1

n
H̃n(ξ

j)TH̃n(ξ
Ni

n )T

2 Then, we prove a conditional result of the Theorem, for the ”fixed

design” matrices using the technique of Bach (2008).

3 Additionally, the objective function to be minimised is based on the

estimated scores

⇒ establish concentration bounds in the estimation of the sample

design matrix Σn

Ni
nNi

n
using the estimated scores (rather than the true

scores).



Simulation studies

Compare numerically the performances of the AFGM estimator with

1) FGGM (Qiao et al, 2018) and 2) FAPO (Li and Solea, 2018).

Given an edge set E of a directed acyclic graph, we generate

functional data by the model

X i

u(ts) =
∑

(i,j)∈E

∑5

q=1

∑5

r=1
f ij
qr (ξ

j
ur)φq(ts) + εius , u = 1, . . . , n, s = 1, . . . , 100 ,

where φi
1(t), . . . , φi

5(t) are the first 5 functions of the orthonormal

Fourier basis, and εius is an iid sample from N (0, σ2).

As a consequence the scores satisfy

ξ i

uq =
∑

(i,j)∈E

∑5

r=1
f ij
qr (ξ

j
ur) + ε̃iuq, u = 1, . . . , n, q = 1, . . . , 5 (14)

where the errors ε̃iuq form an iid sample a centred normal distribution.



Simulation studies

For simplicity we assume f ij
qr (x) = f (x) for all q, r = 1, . . . ,mn and

for all (i , j) ∈ E .

In all examples, we center f (ξ j
ur) to have 0 mean.

We estimate each function X i
u using 10 B-spline basis functions of

order 4.

We choose mn = 5 functional principal components scores so that at

least 90% of the total variation is explained.

We approximate each f ij
qr using B-splines of order 4 and take

kn = 4 + d
√
ne.



Simulation studies

We consider the following two nonlinear scenarios.

Model I: f (x) = 1.4 + 3x − 1

2
+ sin(2π(x − 1

2
)) + 8(x − 1

3
)2 − 8

9
.

For the choice of scores, we simulate ξ i
ur independently from the

uniform distribution U[−1, 1] for all

r = 1, . . . ,mn, i ∈ V, u = 1, . . . , n.

The errors εiuq simulated independently from N (0, 0.1).

Model II: f (x) = − sin(2x) +x 2−25/12 +x + exp(−x)−2/5 · sinh(5/2).

ξ i
ur were simulated independently from the uniform distribution

U[−2.5, 2.5] for all r = 1, . . . ,mn, i ∈ V, u = 1, . . . , n.

The errors εiuq simulated independently from N (0, 1).



Nonlinear scenario

ROC curves ((AFGM (−), FAPO (−−−), FGGM (· · ·))

for Model I (left) and Model II (right) for (p, n) = (100, 100).

The areas under the ROC of the AFGM are larger than for the

FGGM and FAPO, indicating the superior performance of the AFGM

under a nonlinear, sparse and high-dimensional scenario.



Linear scenario
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ROC curves ((AFGM (−), FAPO (−−−), FGGM (· · ·))

The AFGM estimator is computed using the scale scores ξ i
ur

FAPO and the FGGM are computed using standard Gaussian scores

There is some loss of efficiency by the nonparametric functional

estimators, but the losses are quite modest.



Application to EEG data

EEG data of 77 alcoholic subjects and 45 control subjects.

For each subject EEG brain signals were recorded at 256 time points

over a one second interval using 64 electrodes placed on the

subject’s scalp.

 

 

 

          

 
       

 

 
       

 

 
 

     
 

 

 
 

     
 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 
 

 

  

 

A schematic representation of the functional data collected by EEG from a subject.



Application to EEG data

Goal: Apply AFGM to identify differences in the brain network

connectivity between the two groups of subjects.

We take the tuning constant λn to be such that 5% of the
(

64
2

)
pairs

of vertices are retained as edges.

We choose kn = 4 + d
√
ne B-spline functions of order 4, mn = 5.



Application to EEG data

Differential brain network constructed by AFGM:

 

 

 

 X T7 C5 C3 C1 Cz C2 C4 C6 T8 Y

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

F7 F5 F3 F1 Fz F2 F4 F6 F8

P7 P5 P3 P1 Pz P2 P4 P6 P8

AF7

FP1 FPZ Fp2

AF8

PO7

O1 OZ O2

PO8

AF1 AFZ AF2

PO1 POZ PO2

nd

red lines indicate the edges that are in the alcoholic network but not

in the control network.

blue lines indicate the edges that are in the control network but not

in the alcoholic network.

.



Application to EEG data

Pairwise scatterplots for the control group between channels AF1

and P8 (left) and channels O1 and X (right).
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Scatterplots show nonlinear relationships among the scores, violating

the linearity assumption.
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ACI definition

Let U, V and W be subvectors of X = (X 1, . . . ,X p). Let MU , MV , and

MW be Hilbert spaces of additive functions of U, V and W . We say

that U and V are additively conditionally independent given W iff

(I − PMW
)MU ⊥ (I − PMW

)MV ,

where the orthogonality ⊥ is in terms of the inner product in L2(P).



Lemma

Suppose that Assumption 11 holds. Then, there exists a constant C1 > 0

such that for any δ > 0,

P
(
‖Σn

Ni
nNi

n
− Σ∗

Ni
nNi

n
‖F ≥ δ

)
≤ 2 exp

(
− C1

nδ2

(nimnkn)2
+ 2 log(nimnkn)

)
.

(15)

P
(

Λmin(Σn

Ni
nNi

n
) ≤ Cmin − δ

)
≤ 2 exp

(
− C1

nδ2

(nimnkn)2
+ 2 log(nimnkn)

)
.

(16)



The next Lemma guarantees that the sample matrices satisfy the

irrepresentable condition in Assumption 12 with high probability.

Lemma

If Assumption 11 and 12 are satisfied for some 0 < η ≤ 1, then

P
(

max
j /∈Ni

n

‖Σn

ξj Ni
n
(Σn

Ni
nNi

n
)−1‖F ≥

1− η
2√

ni

)
. exp

(
− C1

n

((ni)5/4mnkn)2
+ 2 log(pmnkn)

)
,

where C1 is a positive constant that depends only on Cmin and η.



The next result provides tail bounds for all entries of the matrix

Σ̂n

Ni
nNi

n
− Σn

Ni
nNi

n
.

Theorem

Suppose that Assumption (1) holds. Then, there exists a positive

constants C1 such that for any δ > 0 satisfying 0 < δ ≤ C1 and for all

(i , j) ∈ V × V, i 6= j , r , q = 1, . . . ,mn and k , ` = 1, . . . , kn, we have

P
(∣∣∣1

n

n∑
u=1

(
h̃nk(ξ̂

i

ur)h̃n`(ξ̂
j

uq)− h̃nk(ξ
i

ur)h̃n`(ξ
j

uq)
) ∣∣∣ ≥ δ)

. exp (−C1n
1−α(2+3β)k−2

n δ2) .



Proposition

Suppose that Assumptions 2 and 3 are satisfied. Then, there exist

functions f̃ ij
nqr =

∑kn

k=1
β ij

qrk h̃nk and positive constants c1,C1, such that

P
(
Ω
)
≤ 2 exp

(
− C1

nk−2d
n

nim2
n

+ log(nim2

n)
)
,

where

Ω =
{

max
j∈Ni

n

max
1≤q,r≤mn

1√
n
‖f ijqr − f̃ ijqr‖2 ≥ c1k

−d

n

}
, (17)

and f ijqr =
(
f ij
qr (ξ

j
1r), . . . , f

ij
qr (ξ

j
nr)
)>

, f̃ ijqr =
(
f̃ ij
qr (ξ

j
1r), . . . , f̃

ij
qr (ξ

j
nr)
)>

.



The idea of the proof is to

1 first construct an estimator B̂Ni
n

n by minimizing the following

restricted problem given the true support Ni
n. That is,

B̂Ni
n

n = argmin
{
P̂LNi

n
(B, ξ̂) : B ∈ Rni knmn×mn

}
, (18)

where

P̂LNi
n
(B, ξ̂) =

1

2n
‖ξ̂ i − H̃T

n (ξ̂Ni
n )B‖2

F +
λn

2

(∑p

j∈Ni
n
‖B ij‖F

)2

, (19)

(note that P̂LNi
n
(B, ξ̂) corresponds to the function P̂Li(B, ξ̂), where

we put B ij = 0 whenever j /∈ Ni), and to show that the minimizer in

(18) is “close” to the true matrix B∗Ni
n

n . To achieve this we use

similar arguments as in Bach (2008).

2 We show that (B̂Ni
n

n , 0), with high probability, satisfies the second

KKT-condition (20b), and thus, it is optimal for problem (18)



Lemma

(KKT conditions) A matrix B i = (B ij , j ∈ V \ {i}) ∈ R(p−1)knmn×mn with

support Ni
n is optimal for problem (8) if and only if

(Σ̂n

Ni
nNi

n
+ λnD̂Ni

n
)BNi

n − Σ̂n

Ni
nξ

i = 0, for all j ∈ Ni

n, (20a)

‖Σ̂n

ξj Ni
n
BNi

n − Σ̂n

ξjξi
‖F ≤ λn

∑p

j 6=i
‖B ij‖F , for all j /∈ Ni

n (20b)

where Σ̂n

Ni
nNi

n
, BNi

n = (B ij , j ∈ Ni
n) ∈ Rniknmn×mn ,

B = (β ij
qrk : 1 ≤ q, r ≤ mn, 1 ≤ k ≤ kn) and

D̂Ni
n

= diag
(
(D̂Ni

n
)jj : j ∈ N̂i

n)
)

is a block diagonal matrix with ni elements

(D̂Ni
n
)jj =

∑p

` 6=i
‖B̂ i`‖F
‖B̂ ij‖F

Iknmn ∈ Rknmn×knmn .



Proposition

Suppose Assumptions of Proposition 1-5 are satisfied and that δ satisfies

2

Cmin

λn(n
i)3/2(

∑
j∈Ni

n
‖B∗ijmnkn

‖F)2 ≤ c2b
∗i
n δ (21)

for some constant c2 > 0. Then,

P
(
‖B̂Ni

n
n − B∗Ni

n
n ‖F ≥ δ

)
. exp

(
− C1

n1−α(2+3β)(b∗in )2δ2

(ni)4m2
nk

4
n (
∑

j∈Ni
n
‖B∗ijmnkn

‖F)2
+ 2 log(nimnkn)

)
,

where C1 > 0 such that 0 < δ ≤ C1.



Proposition

The matrix (B̂Ni
n

n , 0) satisfies (20b) with high probability, in the sense that

P(max
j /∈Ni

n

‖Σ̂n

ξj Ni
n
B̂Ni

n
n − Σ̂n

ξjξi
‖F ≥ λn

∑p

j 6=i
‖B̂ ij

n ‖F)

. exp
(
− C1

n1−α(2+3β)(λn

∑
j∈Ni

n
‖B∗ijmnkn

‖F)2

nim2
nk

4
n

+ 2 log(nimnkn)
)
,

where C1 is a positive constant.


