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Actuarial Science

Insurance company with:
2 opposing cash flows

incoming cash premiums
outgoing claims, and

an initial capital.

Question of interest: What is the probability of bankruptcy?
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τ(u)0
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Ruin probability for the Cramér-Lundberg risk model

λ: Poisson arrival rate (N(t))
Uk : i.i.d. claim sizes (G )
c = 1: premium rate
u: initial capital.

Risk reserve process

R(t) = u + t −
N(t)∑
k=1

Uk .

Claim surplus: M = sup0≤t<∞
(
u − R(t)

)
Ruin probability

ψ(u) = P(M > u).
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Pollaczek-Khinchine (PK) formula

PK formula
If ρ = λEU < 1 (safety loading condition) then

ψ(u) = 1− (1− ρ)
∞∑
k=0

ρk(G e)∗k(u),

where G e(u) =
∫ u
0

(
1− G (x)

)
dx/EU (stationary excess claim size

distribution).

Ways to calculate the ruin probability:
closed-form solutions (e.g. algebraic, analytic/Laplace
transforms)
approximations (e.g. PH, asymptotic/tail probabilities)
simulations
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Corrected phase-type approximations

Combining the best of 2 worlds

Phase-type approximations Asymptotic approximations
high accuracy

computationally tractable correct tail behavior
error bounds

Fitting distributions to data
1 higher order statistics for tail probabilities (r.v. C )
2 remaining data set phase-type distribution (r.v. B)

Claim size distribution

G (x) = (1− ε)Fp(x) + εFh(x), x ≥ 0.
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New series expansion for the ruin probability

Theorem
We have

ψ(u) =
1− ρ
1− ρ•

ψ•(u) +
1− ρ
1− ρ•

∞∑
k=1

(
εθ

1− ρ•

)k

Ak(u),

where Ak(u) = P(M
•
0 +M•1 + · · ·+M•k + C e

1 + · · ·+ C e
k > u) and

M•k
D
= M•. This expansion converges for all values of u.
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τ(u)0
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Question: can this series expansion improve simulations?

ψ(u) =
1− ρ
1− ρ•

ψ•(u) +
1− ρ
1− ρ•

εθ

1− ρ•
P(M•0 +M•1 + C e

1 > u)︸ ︷︷ ︸
explicit

+
1− ρ
1− ρ•

∞∑
k=2

(
εθ

1− ρ•

)k

Ak(u).

ϕ(u) : =
1− ρ
1− ρ•

∞∑
k=2

(
εθ

1− ρ•

)k

Ak(u) =

(
εθ

1− ρ•

)2

EAN+2(u)

=

(
εθ

1− ρ•

)2

P(M•0 +M•1 + · · ·+M•N+2 + C e
1 + · · ·+ C e

N+2 > u),

Simulate:

V
D
= M•0 +M•1 + C e

1 +
N+2∑
k=2

(M•k + C e
k ), N ∼ Geom

(
1− ρ
1− ρ•

)
.
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Control variate techniques

Idea of the control variate techniques:
1 We must simulate a r.v. Z (u) such that ϕ(u) = EZ (u).
2 We find another r.v. W (u) that has a known expectation
EW (u) and is strongly correlated with Z (u).

3 We simulate them together, i.e. we take
(
Z (i)(u),W (i)(u)

)
,

i = 1, 2, . . . , κ, are independent copies of
(
Z (u),W (u)

)
.

4 We calculate

ϕ̂κ(u) := ẑκ(u) + α̂κ
(
ŵκ(u)− EW (u)

)
,

where

ẑκ(u) =

∑κ
i=1 Z

(i)(u)

κ
, ŵκ(u) =

∑κ
i=1 W

(i)(u)

κ
,

α̂κ = −
∑κ

i=1

(
Z (i)(u)− ẑκ(u)

)(
W (i)(u)− ŵκ(u)

)∑κ
i=1

(
W (i)(u)− ŵκ(u)

)2 .
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Control variate: max of heavy tails

ϕ(u) =

(
εθ

1− ρ•

)2

P(M•0 +M•1 + · · ·+M•N+2 + C e
1 + · · ·+ C e

N+2︸ ︷︷ ︸
D
=V

> u)

Obviously: Z (u) =
(

εθ
1−ρ•

)2
1{V>u}.

We define: Vn := max{C e
1 , . . . ,C

e
N+2}1{N+2≤n}, for fixed n.

Control variate: Wn(u) =
(

εθ
1−ρ•

)2
1{Vn>u}, for fixed n.

ϕn(u) = EWn(u) =

(
1− ρ
1− ρ•

) n∑
k=2

(
εθ

1− ρ•

)k

P
(
max{C e

1 , . . . ,C
e
k } > u

)
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Alternative control variate: Conditional Monte Carlo

V
D
= M•0︸︷︷︸

=X?
0

+M•1 + C e
1︸ ︷︷ ︸

=X1

+
N+2∑
k=2

(M•k + C e
k︸ ︷︷ ︸

=Xk

)
D
= X ?

0 +
N+2∑
k=1

Xk

If: mk := max{X1, . . . ,Xk}, FX is the c.c.d.f. of Xk ’s, and
S` =

∑`
k=1 Xk , S0 = 0

Now: Z ?(u) =
(

εθ
1−ρ•

)2
(N + 2)FX

(
mN+1 ∨ (u − X ?

0 − SN+1)
)
.

AK control variate: W ?(u) =
(

εθ
1−ρ•

)2
(N + 2)FX(u)

ϕ?(u) =

(
εθ

1− ρ•

)2
(

εθ

1− ρ
+ 2

)
FX(u)
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Numerical experiments

Mixture claim size distribution

PH: Fp(u) = F e
p (u) = e−µu, and µB = 1/µ (µ = 3)

HT: shifted Pareto with shape a > 1 and scale b > 0, i.e.
Fh(u) = (1 + u/b)−a and F e

h (u) = (1 + u/b)−(a−1), u ≥ 0,
with µC = b/(a− 1) (b = 1)

Perturbation parameter: ε ∈ {0.1, 0.7}.

Focus on ρ ∈ {0.9, 0.99, 0.999}.

Order of ϕn(u) equal to n = 100

Number of simulations is κ = 10, 000.

10 / 14



Figures for 1st control variate (max of heavy tails)

Figure: Plotted in a log-log scale. Model parameters: a = 2, ε = 0.1, and
ρ = 0.99.
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Figures for 2nd control variate (AK estimator)

Figure: Plotted in a log-log scale. Model parameters: a = 2, ε = 0.1, and
ρ = 0.99.
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Conclusions

We introduced an alternative series expansion for the PK
formula in the Cramér-Lundberg model for mixture claim sizes
Significant improvement of simulation algorithms based on this
series
Proposed a control variate technique: fast and preferable in
the heavy traffic regime
Variance reduction is better with AK conditional Monte Carlo
technique but the method is significantly slower
For other mixtures that the 2nd term of the ruin probability
cannot be evaluated, it can also be simulated
Extension to the Sparre Andersen model,which also has a
PK-type formula with respect to the ladder height distribution
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