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Actuarial Science

Insurance company with:
@ 2 opposing cash flows
e incoming cash premiums
e outgoing claims, and

@ an initial capital.

Question of interest: What is the probability of bankruptcy?
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Ruin probability for the Cramér-Lundberg risk model

A: Poisson arrival rate (N(t))
Ug: i.id. claim sizes (G)

¢ = 1: premium rate

u: initial capital.

Risk reserve process

R(t)=u+t—> U
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Ruin probability for the Cramér-Lundberg risk model

A: Poisson arrival rate (N(t))
Ug: i.id. claim sizes (G)

¢ = 1: premium rate

u: initial capital.

Risk reserve process
N(t)
R(t)=u+t—> U
k=1

Claim surplus: M = supg<,o, (u— R(t))

Ruin probability

P(u) =P(M > u).



Pollaczek-Khinchine (PK) formula

PK formula

If p=AEU < 1 (safety loading condition) then

P(u)=1—(1—-p)>_ p*(G)™*

k=0

where G¢(u) = [, (1 — G(x))dx/EU (stationary excess claim size
dlstrlbutlon)
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Ways to calculate the ruin probability:

@ closed-form solutions (e.g. algebraic, analytic/Laplace
transforms)

@ approximations (e.g. PH, asymptotic/tail probabilities)

@ simulations
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Corrected phase-type approximations
Combining the best of 2 worlds

Phase-type approximations Asymptotic approximations
high accuracy

computationally tractable correct tail behavior
error bounds




Corrected phase-type approximations
Combining the best of 2 worlds

Phase-type approximations Asymptotic approximations
high accuracy

computationally tractable correct tail behavior
error bounds

Fitting distributions to data
@ higher order statistics for tail probabilities (r.v. C)
@ remaining data set phase-type distribution (r.v. B)

Claim size distribution

G(x) = (1 —€)Fp(x) + €Fn(x), x>0.



New series expansion for the ruin probability

where o (u) = P(Mg + M7 +---+ Mp + C§ +--- + C > u) and

Mz 2 M*. This expansion converges for all values of u.



New series expansion for the ruin probability

where o (u) = P(Mg + M7 +---+ Mp + C§ +--- + C > u) and

Mz 2 M*. This expansion converges for all values of u.

o1/

R




New series expansion for the ruin probability

where o (u) = P(Mg + M7 +---+ Mp + C§ +--- + C > u) and

K

My

M?®. This expansion converges for all values of u.

DISCARD

/
|
/
/‘/\/\
VA
/

VAR AR
vy | /
/ | A




Question: can this series expansion improve simulations?

1-— 1-— 0
Ul) = T (@) s T POME M+ CE > )

~
explicit
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Question: can this series expansion improve simulations?

1—0p 1—p €
° ]PM. M. e
Y(u) 1_p.¢’() I 1—pr (Mg + M + Cf > u)
ex;;ﬁcit
1—p OO( €6 )k
—+ g/ku
_1-p = 0\~ B 0 2
olu) s = 1—p* kz_:z(l—p') ) = <1—p°> B fhs2(t)
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Question: can this series expansion improve simulations?

1-— 1-— 0
Ul) = T (@) s T POME M+ CE > )

~
explicit

p(u) - = 11_p i (lje )kdk(u) = <1i9p.>2]EdN+2(u)

"o p*
€d 2
= (1,0‘) P(Mg + M} + -+ My o+ G+ + Ciyp > u),

Simulate:

N+2
1—
VE Mg+ My Y (M) CR), NNGeom( f{).
k=2 1-p
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Control variate techniques

Idea of the control variate techniques:
©® We must simulate a r.v. Z(u) such that ¢(u) = EZ(u).
@ We find another r.v. W(u) that has a known expectation
EW/(u) and is strongly correlated with Z(u).
© We simulate them together, i.e. we take (Z( )(u), WO (u ).
i=1,2,...,k, are independent copies of ( (v), W(u))
@ We calculate

where
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Control variate: max of heavy tails

0 2
gp(u):( ¢ ) P(MS + M+ 4 Mo+ G+ + Cipp > 1)

19
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Obviously: Z(u) = <1f9p.) Levsyy-



Control variate: max of heavy tails

0 2
go(u):( ¢ ) P(MS + M+ 4 Mo+ G+ + Cipp > 1)

19

1%

2
Obviously: Z(u) = (%) Tivsuy

We define: V), := max{Cf, ..., C§ ,} 1 {nt2<n), for fixed n.

2
Control variate: W,(u) = (ﬁi.) Liy,>y), for fixed n.

on(u) = EW,(u) = (f_‘p{) kz_:z (liep.>kIP(max{Cf,.‘.,C,f} > u)
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Alternative control variate: Conditional Monte Carlo

5 N-+2 ° N+2
V = MO +M1+C1+Z Mk+Ck) — Xg‘i‘ZXk
— x* % k=2 % k=1

If: my ;= max{Xy,..., Xk}, Fx is the c.c.d.f. of X's, and
Sy =31 Xi, So=0

Now: Z*(u) = (jp) (N +2)Fx(mns1 V (1 — Xg — Snsn)).-

AK control variate: W*(u) = ( <6 ) (N + 2)F x(u)

o (u) = (1 iep.>2 (16_9;) +2>Fx(u)
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Numerical experiments

@ Mixture claim size distribution

o PH: Fy(u) = Fs(u) = e, and pg = 1/p (1= 3)
e HT: shifted Pareto with shape a > 1 and scale b > 0, i.e.

Fu(u) = (14 u/b) ™" and FE(u) = (14 u/b)~ "V, u >0,
with pc = b/(a—1) (b=1)

o Perturbation parameter: € € {0.1,0.7}.
e Focus on p € {0.9,0.99,0.999}.
@ Order of ¢,(u) equal to n = 100

@ Number of simulations is k = 10, 000.
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Figures for 1st control variate (max of heavy tails)
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Figure: Plotted in a log-log scale. Model parameters: a =2, ¢ = 0.1, and
p = 0.99.
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Figures fo
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Figure: Plotted in a log-log scale. Model

p = 0.99.
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Conclusions

@ We introduced an alternative series expansion for the PK
formula in the Cramér-Lundberg model for mixture claim sizes

@ Significant improvement of simulation algorithms based on this
series

@ Proposed a control variate technique: fast and preferable in
the heavy traffic regime

@ Variance reduction is better with AK conditional Monte Carlo
technique but the method is significantly slower

@ For other mixtures that the 2nd term of the ruin probability
cannot be evaluated, it can also be simulated

@ Extension to the Sparre Andersen model,which also has a
PK-type formula with respect to the ladder height distribution
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