Μπευζιανης μεθοδων στην οικονομια της υγειας

(thanks/blame mostly to Google Translate)

Gianluca Baio

University College London Department of Statistical Science

g.baio@ucl.ac.uk http://www.ucl.ac.uk/statistics/research/statistics-health-economics/ http://www.statistica.it/gianluca https://github.com/giabaio

Research Seminars Department of Statistics Athens University of Economics and Business, Athens

Thursday 3 May 2018

1. Health economic evaluation

- What is it?
- How does it work?

2. Statistical modelling

- Individual-level vs aggregated data
- The importance of being a Bayesian

3. Some examples — you get to choose...

- Individual level & partially observed data
- Survival analysis in HTA
- Value of information

- 1. Health economic evaluation
 - What is it?
 - How does it work?

2. Statistical modelling

- Individual-level vs aggregated data
- The importance of being a Bayesian

Some examples — you get to choose...

- Individual level & partially observed data
- Survival analysis in HTA
- Value of information

- 1. Health economic evaluation
 - What is it?
 - How does it work?
- 2. Statistical modelling
 - Individual-level vs aggregated data
 - The importance of being a Bayesian

3. Some examples — you get to choose...

- Individual level & partially observed data
- Survival analysis in HTA
- Value of information

- 1. Health economic evaluation
 - What is it?
 - How does it work?
- 2. Statistical modelling
 - Individual-level vs aggregated data
 - The importance of being a Bayesian
- 3. Some examples you get to choose...
 - Individual level & partially observed data
 - Survival analysis in HTA
 - Value of information

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

- Estimates relevant population parameters θ
- Varies with the type of available data (& statistical approach!)

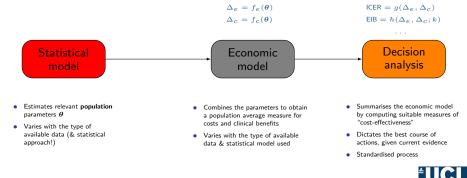
Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

 Varies with the type of available data & statistical model used

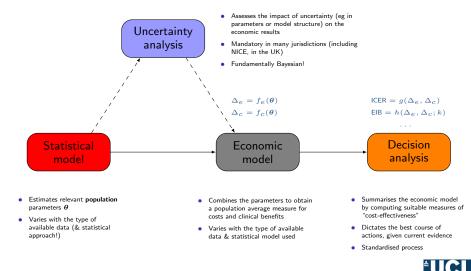
Gianluca Baio (UCL)

approach!)

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources



Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources



		Demographics			HRQL data				Re	ta	Clinical outcome					
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	М	21		0.12	0.16		0.38	1 204	1 808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 y_{ij} = Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ...

 $u_{ij}=$ Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, \dots)

 $c_{ij} = \mathsf{Use} \mathsf{ of resources} (\mathsf{drugs}, \mathsf{hospital}, \mathsf{GP} \mathsf{ appointments}, \dots)$

		Den	nograp	hics	HRQL data				Re	ta	Clinical outcome					
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	М	21		0.12	0.16		0.38	1 204	1 808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 y_{ii} = Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... u_{ij} = Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...) c_{ii} = Use of resources (drugs, hospital, GP appointments, ...)

Compute individual QALYs and total costs as

$$e_{i} = \sum_{j=1}^{J} (u_{ij} + u_{ij-1}) \frac{\delta_{j}}{2} \text{ and } c_{i} = \sum_{j=0}^{J} c_{ij}, \qquad \left[\text{with: } \delta_{j} = \frac{\text{Time}_{j} - \text{Time}_{j-1}}{\text{Unit of time}} \right]$$

$$QALY_{i} = "Area under the curve"$$

$$QALY_{i} = "Area under the curve"$$

$$\frac{\delta_{j}}{\int_{0}^{J} \frac{u_{ij} + u_{ij-1}}{2}}{\int_{0}^{J} \frac{u_{ij} + u_{ij-1}}{2}}$$

$$Prov(yeas) = \frac{1}{2} \frac{\delta_{j}}{\delta_{j}} \frac{u_{ij} + u_{ij-1}}{2}$$

/ 36

		Den	nograp	hics	HRQL data				Re	ta	Clinical outcome					
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	Μ	21		0.12	0.16		0.38	1 204	1 808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 $y_{ij} =$ Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... $u_{ij} =$ Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...) $c_{ij} =$ Use of resources (drugs, hospital, GP appointments, ...)

Compute individual QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1} \right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=0}^J c_{ij}, \qquad \left[\text{with: } \delta_j = \frac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}} \right]$$

Often implicitly) assume normality and linearity and model independently individual QALYs and total costs by controlling for baseline values

$$\begin{array}{lll} e_{i} & = & \alpha_{e0} + \alpha_{e1}u_{0i} + \alpha_{e2}\mathsf{Trt}_{i} + \varepsilon_{ei} \, [+ \ldots], & & \varepsilon_{ei} \sim \mathsf{Normal}(0, \sigma_{e}) \\ c_{i} & = & \alpha_{c0} + \alpha_{c1}c_{0i} + \alpha_{c2}\mathsf{Trt}_{i} + \varepsilon_{ci} \, [+ \ldots], & & \varepsilon_{ci} \sim \mathsf{Normal}(0, \sigma_{c}) \end{array}$$

		Den	nograp	hics	HRQL data				Re	ta	Clinical outcome					
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	Μ	21		0.12	0.16		0.38	1 204	1 808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 y_{ij} = Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... u_{ij} = Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...) c_{ij} = Use of resources (drugs, hospital, GP appointments, ...)

Compute individual QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1} \right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=0}^J c_{ij}, \qquad \left[\text{with: } \delta_j = \frac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}} \right]$$

Often implicitly) assume normality and linearity and model independently individual QALYs and total costs by controlling for baseline values

$$\begin{array}{lll} e_{i} & = & \alpha_{e0} + \alpha_{e1}u_{0i} + \alpha_{e2}\mathsf{Trt}_{i} + \varepsilon_{ei} \, [+ \ldots], & & \varepsilon_{ei} \sim \mathsf{Normal}(0, \sigma_{e}) \\ c_{i} & = & \alpha_{c0} + \alpha_{c1}c_{0i} + \alpha_{c2}\mathsf{Trt}_{i} + \varepsilon_{ci} \, [+ \ldots], & & \varepsilon_{ci} \sim \mathsf{Normal}(0, \sigma_{c}) \end{array}$$

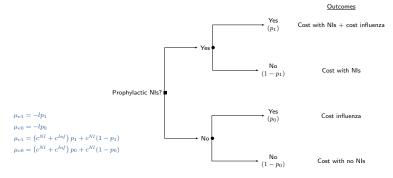
 Estimate population average cost and effectiveness differentials and use bootstrap to quantify uncertainty

Gianluca Baio (UCL)

Seminar AUEB, 3 May 2018

1. ("Standard") Statistical modelling — Aggregated level data

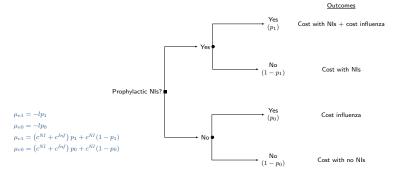
Build a population level model (eg decision tree/Markov model)



NB: in this case, the "data" are typically represented by summary statistics for the parameters of interest $\theta = (p_0, p_1, l, \ldots)$, but may also have access to a combination of ILD and summaries

1. ("Standard") Statistical modelling — Aggregated level data

Build a population level model (eg decision tree/Markov model)



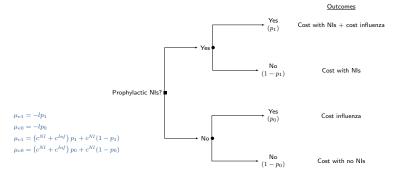
NB: in this case, the "data" are typically represented by summary statistics for the parameters of interest $\theta = (p_0, p_1, l, \ldots)$, but may also have access to a combination of ILD and summaries

Use point estimates for the parameters to build the "base-case" (average) evaluation

Seminar AUEB, 3 May 2018

1. ("Standard") Statistical modelling — Aggregated level data

Build a population level model (eg decision tree/Markov model)



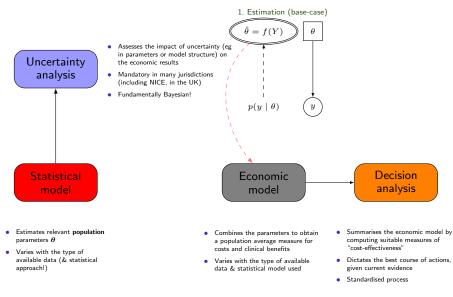
NB: in this case, the "data" are typically represented by summary statistics for the parameters of interest $\theta = (p_0, p_1, l, \ldots)$, but may also have access to a combination of ILD and summaries

- Our set of the parameters to build the "base-case" (average) evaluation
- Use resampling methods (eg bootstrap) to propage uncertainty in the point estimates and perform uncertainty analysis

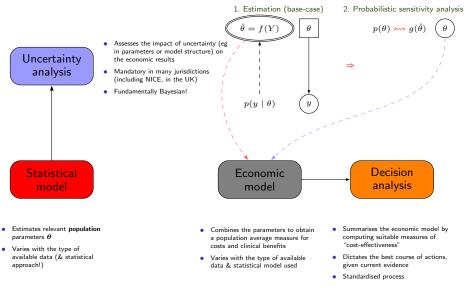
Gianluca Baio (UCL)

Bayesian methods in health economics

"Standard" approach to HTA — "Two-stage"

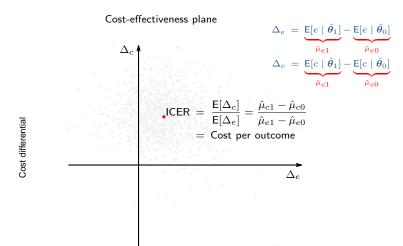


"Standard" approach to HTA — "Two-stage"



"Two-stage approach" (Spiegelhalter, Abrams & Myles, 2004)

2./3. Economic modelling+Decision analysis — base-case scenario

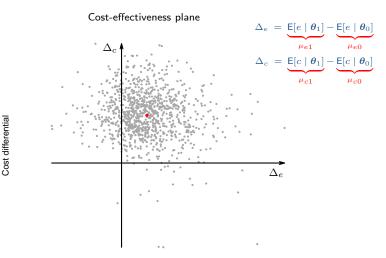


Effectiveness differential

Gianluca Baio (UCL)

Bayesian methods in health economics

Seminar AUEB, 3 May 2018 7 / 36



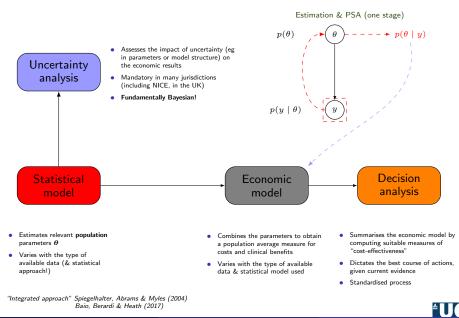
Effectiveness differential

Gianluca Baio (UCL)

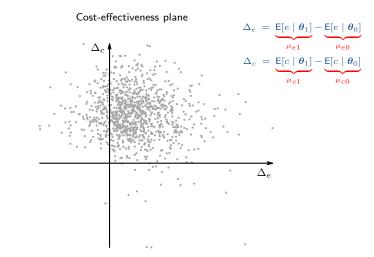
Bayesian methods in health economics

Seminar AUEB, 3 May 2018 7 / 36

Bayesian approach to HTA



2./3./4. Economic modelling+Decision analysis+Uncertainty analysis



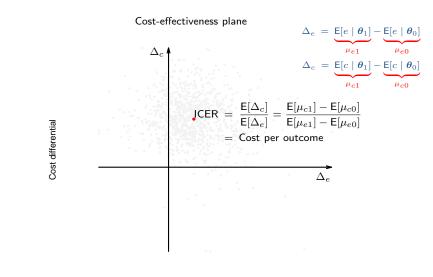
Effectiveness differential

Cost differential

Bayesian methods in health economics

Seminar AUEB, 3 May 2018 9 / 36

2./3./4. Economic modelling+Decision analysis+Uncertainty analysis



Effectiveness differential

36

• Potential correlation between costs & clinical benefits

[Both ILD and ALD]

- Strong positive correlation effective treatments are innovative and result from intensive and lengthy research \Rightarrow are associated with higher unit costs
- Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
- Because of the way in which standard models are set up, bootstrapping generally only approximates the underlying level of correlation MCMC does a better job!

- Potential correlation between costs & clinical benefits
 - Strong positive correlation effective treatments are innovative and result from intensive and lengthy research \Rightarrow are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
 - Because of the way in which standard models are set up, bootstrapping generally only approximates the underlying level of correlation MCMC does a better job!
- Joint/marginal normality not realistic
 - Costs usually skewed and benefits may be bounded in $\left[0;1\right]$
 - Can use transformation (e.g. logs) but care is needed when back transforming to the natural scale
 - Should use more suitable models (e.g. Beta, Gamma or log-Normal) generally easier under a Bayesian framework

[Both ILD and ALD]

[Mainly ILD]

Gianluca Baio (UCL)

- Potential correlation between costs & clinical benefits
 - Strong positive correlation effective treatments are innovative and result from intensive and lengthy research \Rightarrow are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
 - Because of the way in which standard models are set up, bootstrapping generally only approximates the underlying level of correlation MCMC does a better job!
- Joint/marginal normality not realistic
 - Costs usually skewed and benefits may be bounded in $\left[0;1\right]$
 - Can use transformation (e.g. logs) but care is needed when back transforming to the natural scale
 - Should use more suitable models (e.g. Beta, Gamma or log-Normal) generally easier under a Bayesian framework
- Particularly as the focus is on decision-making (rather than just inference), we need to use all available evidence to fully characterise current uncertainty on the model parameters and outcomes
 [Mainly ALD]
 - A Bayesian approach is helpful in combining different sources of information
 - Propagating uncertainty is a fundamentally Bayesian operation!

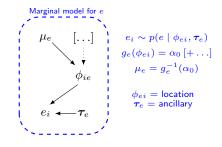
[Mainly ILD]

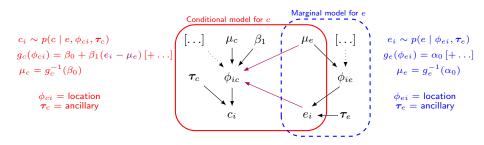
Gianluca Baio (UCL)

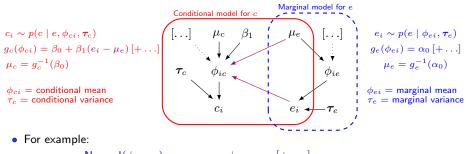
- 1. Health economic evaluation
 - What is it?
 - How does it work?
- 2. Statistical modelling
 - Individual-level vs aggregated data
 - The importance of being a Bayesian

3. Some examples

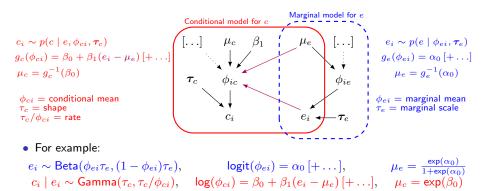
- Individual level & partially observed data
- Survival analysis in HTA
- Value of information



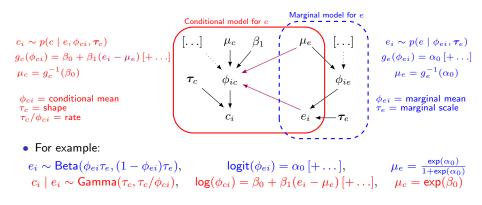




$$\begin{array}{ll} e_i \sim \operatorname{Normal}(\phi_{ei}, \tau_e), & \phi_{ei} = \alpha_0 [+ \dots], & \mu_e = \alpha_0\\ c_i \mid e_i \sim \operatorname{Normal}(\phi_{ci}, \tau_c), & \phi_{ci} = \beta_0 + \beta_1 (e_i - \mu_e) [+ \dots], & \mu_c = \beta_0 \end{array}$$

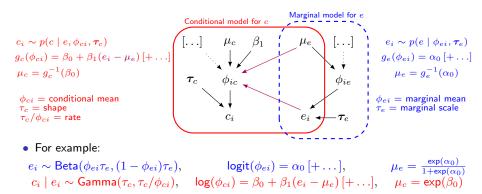


• In general, can represent the joint distribution as $p(e, c) = p(e)p(c \mid e) = p(c)p(e \mid c)$



• Combining "modules" and fully characterising uncertainty about deterministic functions of random quantities is relatively straightforward using MCMC

Seminar AUEB, 3 May 2018



- Combining "modules" and fully characterising uncertainty about deterministic functions of random quantities is relatively straightforward using MCMC
- Prior information can help stabilise inference (especially with sparse data!), eg
 - Cancer patients are unlikely to survive as long as the general population
 - ORs are unlikely to be greater than ± 5

Example: MenSS trial

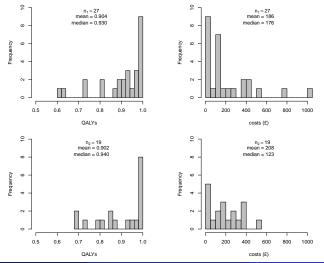
- The MenSS pilot RCT evaluates the cost-effectiveness of a new digital intervention to reduce the incidence of STI in young men with respect to the SOC
 - QALYs calculated from utilities (EQ-5D 3L)
 - Total costs calculated from different components (no baseline)

- The MenSS pilot RCT evaluates the cost-effectiveness of a new digital intervention to reduce the incidence of STI in young men with respect to the SOC
 - QALYs calculated from utilities (EQ-5D 3L)
 - Total costs calculated from different components (no baseline)

Time	Type of outcome	observed (%)	observed (%)	
		Control $(n_1=75)$	Intervention $(n_2=84)$	
Baseline	utilities	72 (96%)	72 (86%)	
3 months	utilities and costs	34 (45%)	23 (27%)	
6 months	utilities and costs	35 (47%)	23 (27%)	
12 months	utilities and costs	43 (57%)	36 (43%)	
Complete cases	utilities and costs	27 (44%)	19 (23%)	

Example: MenSS trial

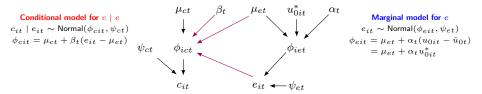
- The MenSS pilot RCT evaluates the cost-effectiveness of a new digital intervention to reduce the incidence of STI in young men with respect to the SOC
 - QALYs calculated from utilities (EQ-5D 3L)
 - Total costs calculated from different components (no baseline)



13 / 36

Bivariate Normal

- Simpler and closer to "standard" frequentist model
- Account for correlation between QALYs and costs

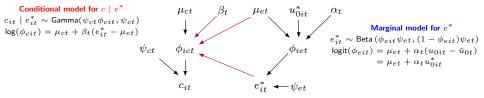


Bivariate Normal

- Simpler and closer to "standard" frequentist model
- Account for correlation between QALYs and costs

8 Beta-Gamma

- Account for correlation between outcomes
- Model the relevant ranges: $\mathsf{QALYs} \in (0,1)$ and $\mathsf{costs} \in (0,\infty)$
- But: needs to rescale observed data $e_{it}^* = (e_{it} \epsilon)$ to avoid spikes at 1



Bivariate Normal

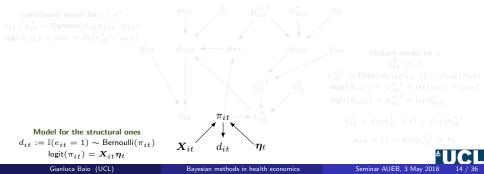
- Simpler and closer to "standard" frequentist model
- Account for correlation between QALYs and costs

eta-Gamma

- Account for correlation between outcomes
- Model the relevant ranges: $\mathsf{QALYs} \in (0,1)$ and $\mathsf{costs} \in (0,\infty)$
- But: needs to rescale observed data $e^*_{it} = (e_{it} \epsilon)$ to avoid spikes at 1

Hurdle model

- Model e_{it} as a **mixture** to account for correlation between outcomes, model the relevant ranges and account for structural values
- May expand to account for partially observed baseline utility u_{0it}



Bivariate Normal

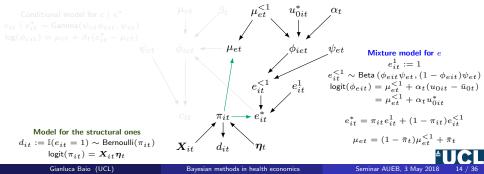
- Simpler and closer to "standard" frequentist model
- Account for correlation between QALYs and costs

eta-Gamma

- Account for correlation between outcomes
- Model the relevant ranges: $\mathsf{QALYs} \in (0,1)$ and $\mathsf{costs} \in (0,\infty)$
- But: needs to rescale observed data $e^*_{it} = (e_{it} \epsilon)$ to avoid spikes at 1

Hurdle model

- Model e_{it} as a **mixture** to account for correlation between outcomes, model the relevant ranges and account for structural values
- May expand to account for partially observed baseline utility u_{0it}



Bivariate Normal

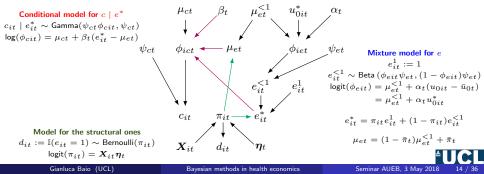
- Simpler and closer to "standard" frequentist model
- Account for correlation between QALYs and costs

eta-Gamma

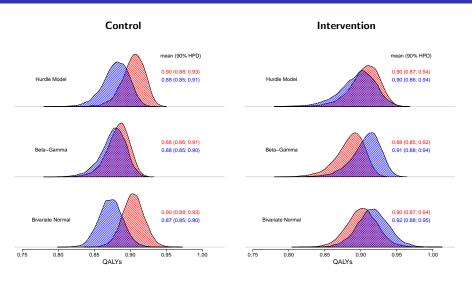
- Account for correlation between outcomes
- Model the relevant ranges: $\mathsf{QALYs} \in (0,1)$ and $\mathsf{costs} \in (0,\infty)$
- But: needs to rescale observed data $e^*_{it} = (e_{it} \epsilon)$ to avoid spikes at 1

Hurdle model

- Model e_{it} as a **mixture** to account for correlation between outcomes, model the relevant ranges and account for structural values
- May expand to account for partially observed baseline utility u_{0it}



Results

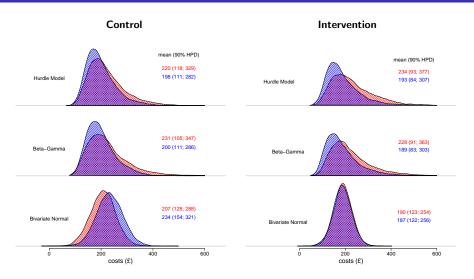


Complete cases only All cases (missing at random, MAR)

> ▲ UCL Seminar AUEB, 3 May 2018 15 / 36

Gianluca Baio (UCL)

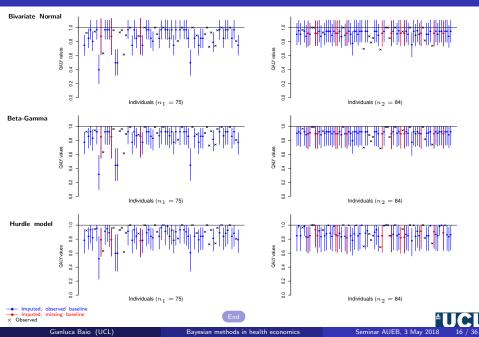
Results



Complete cases only All cases (missing at random, MAR)

> **≜ UCL** Seminar AUEB, 3 May 2018 15 / 36

Bayesian multiple imputation (under MAR)



Outline

- 1. Health economic evaluation
 - What is it?
 - How does it work?
- 2. Statistical modelling
 - Individual-level vs aggregated data
 - The importance of being a Bayesian

3. Some examples

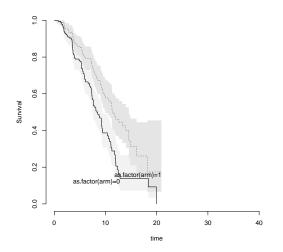
- Individual level & partially observed data
- Survival analysis in HTA
- Value of information

4. Conclusions

Survival analysis Value of information

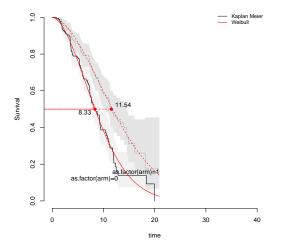
Survival analysis in HTA

- Survival data are often the main outcome in clinical studies relevant for HTA
 - Cancer drugs (progression-free/overall survival time): \approx 40% of NICE appraisals!
 - Need to extrapolate, for economic modelling purposes. BUT: Limited follow up from trials, not consistent with time horizon of economic model



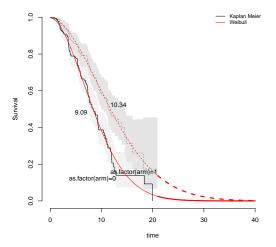
Survival analysis in HTA

- Survival data are often the main outcome in clinical studies relevant for HTA
 - Cancer drugs (progression-free/overall survival time): pprox 40% of NICE appraisals!
 - Need to extrapolate, for economic modelling purposes. **BUT**: Limited follow up from trials, not consistent with time horizon of economic model



Survival analysis in HTA

- Survival data are often the main outcome in clinical studies relevant for HTA
 - Cancer drugs (progression-free/overall survival time): pprox 40% of NICE appraisals!
 - Need to extrapolate, for economic modelling purposes. BUT: Limited follow up from trials, not consistent with time horizon of economic model



Mean time: $\int_0^\infty S(t)dt$

Gianluca Baio (UCL)

- Survival data are often the main outcome in clinical studies relevant for HTA
 - Cancer drugs (progression-free/overall survival time): \approx 40% of NICE appraisals!
 - Need to **extrapolate**, for economic modelling purposes. **BUT**: Limited follow up from trials, not consistent with time horizon of economic model
- When there is strong correlation among the survival parameters, the results of uncertainty analysis may be (strongly) biased under a more simplistic frequentist model
 - This matters most in health economics, because this bias carries over the economic modelling, optimal decision making and assessment of the impact of parametric uncertainty!
 - A full Bayesian approach propagates directly correlation and uncertainty in the model parameters through to the survival curves and the economic model
- For more complex models, MLE-based estimates may fail to converge
 - This may be an issue for multi-parameter models, where limited data (not compounded by relevant prior information) are not enough to fit all the model parameters
 - NB: you would normally need to fit more complex models for cases where the survival curves are "strange" and so the usual parametric models fail to provide sufficient fit

- Survival data are often the main outcome in clinical studies relevant for HTA
 - Cancer drugs (progression-free/overall survival time): \approx 40% of NICE appraisals!
 - Need to extrapolate, for economic modelling purposes. **BUT**: Limited follow up from trials, not consistent with time horizon of economic model

```
        Model fit for the Generalised F model, obtained using Flexsurvreg

        (Maximum Likelihood Estimate). Running time: 1.157 seconds

        mean
        se
        L95%
        U95%

        mu
        2.29139696
        0.0798508
        2.13489e+00
        2.44790e+00

        sigma
        0.58729598
        0.0725044
        4.61076e-01
        7.48069e-01
```

```
Q 0.84874994 0.2506424 3.57500e-01 1.34000e+00
P 0.00268265 0.0902210 6.33197e-32 1.13655e+26
as.factor(arm)1 0.34645851 0.0877892 1.74395e-01 5.18522e-01
```

```
Model fit for the Generalised F model, obtained using Stan
(Bayesian inference via Hamiltonian Monte Carlo). Running time: 26.692 seconds
```

	mean	se	L95%	U95%
mu	2.256760	0.3455163	0.0897086	0.0865904
sigma	0.507861	0.0762112	0.3608566	0.6582047
Q	0.700062	0.3358360	0.0786118	1.3880582
Р	1.131968	0.5837460	0.3908284	2.6342762
as.factor(arm)1	0.345516	0.0865904	0.1745665	0.5176818

Set up/interventions

• ICD (Implantable Cardioverter Defibrillators) compared to anti-arrhythmic drugs (AAD) for prevention of sudden cardiac death in people with cardiac arrhythmia

Set up/interventions

 ICD (Implantable Cardioverter Defibrillators) compared to anti-arrhythmic drugs (AAD) for prevention of sudden cardiac death in people with cardiac arrhythmia

Data

- Individual data from cohort of 535 UK cardiac arrhythmia patients implanted with ICDs between 1991 and 2002
- Meta-analysis of three (non-UK) RCTs providing published HRs
 - Relatively short-term follow-up: approximately 75% people, followed for less than 5 years, maximum 10 years
- UK population mortality statistics by age, sex, cause of death

Set up/interventions

 ICD (Implantable Cardioverter Defibrillators) compared to anti-arrhythmic drugs (AAD) for prevention of sudden cardiac death in people with cardiac arrhythmia

Data

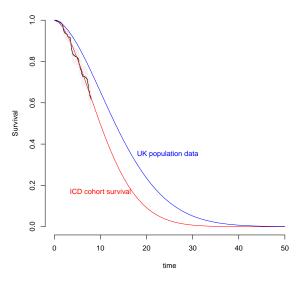
- Individual data from cohort of 535 UK cardiac arrhythmia patients implanted with ICDs between 1991 and 2002
- Meta-analysis of three (non-UK) RCTs providing published HRs
 - Relatively short-term follow-up: approximately 75% people, followed for less than 5 years, maximum 10 years
- UK population mortality statistics by age, sex, cause of death

Objective

- Estimate the survival curve over the lifetime of ICD and AAD patients in UK
- Extrapolate the output to inform the wider economic model

Basic idea

Use UK population data (matched by age/sex) to "anchor" the ICD population risk



Basic idea

Use UK population data (matched by age/sex) to "anchor" the ICD population risk

• Perhaps the easiest way of doing this anchoring is to relate the hazards between the two populations — eg **proportional hazard ratio**:

$$h_{\rm ICD}(t) = e^{\beta} h_{\rm UK}(t) \qquad \Leftrightarrow \qquad {\sf HR} = \frac{h_{\rm ICD}(t)}{h_{\rm UK}(t)} = e^{\beta} = {\sf Constant}$$

- Relatively easy to model but probably very unrealistic!
 - ICD patients are at (much?) greater risk of arrhythmia death
 - If the proportion of deaths caused by arrythmia changes over time, we would induce bias, because we would be extrapolate a constant HR for all causes mortality

Basic idea

Seminar AUEB, 3 May 2018

Use UK population data (matched by age/sex) to "anchor" the ICD population risk

• Perhaps the easiest way of doing this anchoring is to relate the hazards between the two populations — eg **proportional hazard ratio**:

$$h_{\rm ICD}(t) = e^{\beta} h_{\rm UK}(t) \qquad \Leftrightarrow \qquad {\sf HR} = \frac{h_{\rm ICD}(t)}{h_{\rm UK}(t)} = e^{\beta} = {\sf Constant}$$

- Relatively easy to model but probably very unrealistic!
 - ICD patients are at (much?) greater risk of arrhythmia death
 - If the proportion of deaths caused by arrythmia changes over time, we would induce bias, because we would be extrapolate a constant HR for all causes mortality
- Formally account for multiple mortality causes (Poly-Weibull model):

 $h_{\rm ICD}(t) = h_{\rm ICD}^{\rm arr}(t) + h_{\rm ICD}^{\rm oth}(t)$ $= e^{\beta} h_{\rm UK}^{\rm arr}(t) + h_{\rm UK}^{\rm oth}(t)$ $= e^{\beta} \alpha_1 \mu_1 t^{\alpha_1 - 1} + \alpha_2 \mu_2 t^{\alpha_2 - 1}$

- This assumes that:
 - Arrhythmia hazard is proportional to matched UK population
 - Other causes hazard is identical to matched UK population

- To set up a full Bayesian model including a reasonable specification of the priors can be a hard task
- Often people claim that they have "no prior information".

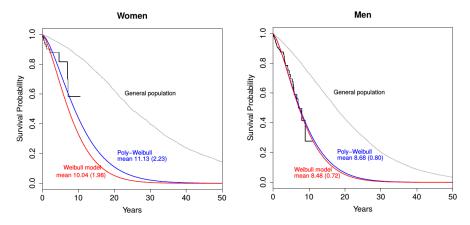
- To set up a full Bayesian model including a reasonable specification of the priors can be a hard task
- Often people claim that they have "no prior information". But don't they?...

- To set up a full Bayesian model including a reasonable specification of the priors can be a hard task
- Often people claim that they have "no prior information". But don't they?...
- In the ICD case, age at entry is around 60 we know that people won't survive for more than other 60 years
 - Setting a prior for the scale $\mu_i \sim {\rm Uniform}(0,100)$ implies that the prior mean survival of the resulting Weibull distribution is

$$\mu_i \Gamma\left(1 + \frac{1}{\alpha}\right) < 60$$

• Can also include some knowledge on the shape α and the coefficient β to limit their variations in reasonable ranges

Results



• Ignoring cause-specific mortality (Weibull) results in larger bias, especially for females (because the arrhythmia proportion of deaths does vary over time in that subgroup)

End

Outline

- 1. Health economic evaluation
 - What is it?
 - How does it work?
- 2. Statistical modelling
 - Individual-level vs aggregated data
 - The importance of being a Bayesian

3. Some examples

- Individual level & partially observed data
- Survival analysis in HTA
- Value of information

4. Conclusions

ILD+Missing data

Value of information

- **Example 1**: Intervention t = 1 is the most cost-effective, given current evidence
 - Pr(t = 1 is cost-effective) = 0.51
 - If we get it wrong: Increase in costs = $\pounds 3$
 - Decrease in effectiveness = 0.000001 QALYs
 - Large uncertainty/negligible consequences ⇒ can afford uncertainty

- **Example 1**: Intervention t = 1 is the most cost-effective, given current evidence
 - $\Pr(t = 1 \text{ is cost-effective}) = 0.51$
 - If we get it wrong: Increase in costs = $\pounds 3$

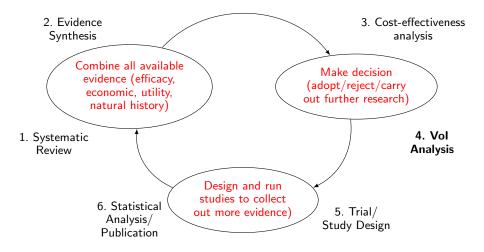
Decrease in effectiveness = 0.000001 QALYs

- Large uncertainty/negligible consequences ⇒ can afford uncertainty
- **Example 2**: Intervention t = 1 is the most cost-effective, given current evidence
 - $\Pr(t = 1 \text{ is cost-effective}) = 0.999$
 - If we get it wrong: Increase in costs = £1000000000

Decrease in effectiveness = 999999 QALYs

 Tiny uncertainty/dire consequences ⇒ probably should think about it...

Evidence Based Decision-Making and Value of Information (Vol)



Process inherently Bayesian!

Vol: Basic idea

- A new study will provide new data
 - Reducing (or even eliminating) uncertainty in a subset of model parameters
- Update the cost-effectiveness model
 - If the optimal decision changes, gain in monetary net benefit (NB = utility) from using new optimal treatment
 - If optimal decision unchanged, no gain in NB
- Expected VOI is the average gain in NB

- A new study will provide new data
 - Reducing (or even eliminating) uncertainty in a subset of model parameters
- Update the cost-effectiveness model
 - If the optimal decision changes, gain in monetary net benefit (NB = utility) from using new optimal treatment
 - If optimal decision unchanged, no gain in NB
- Expected VOI is the average gain in NB

Solution Expected Value of Perfect Information (EVPI)

- Value of completely resolving uncertainty in all input parameters to decision model
- Infinite-sized long-term follow-up trial measuring everything!
- Gives an upper-bound on the value of new study if EVPI is low, suggests we can make our decision based on existing information

- A new study will provide new data
 - Reducing (or even eliminating) uncertainty in a subset of model parameters
- Update the cost-effectiveness model
 - If the optimal decision changes, gain in monetary net benefit (NB = utility) from using new optimal treatment
 - If optimal decision unchanged, no gain in NB
- Expected VOI is the average gain in NB

Expected Value of Perfect Information (EVPI)

- Value of completely resolving uncertainty in all input parameters to decision model
- Infinite-sized long-term follow-up trial measuring everything!
- Gives an upper-bound on the value of new study if EVPI is low, suggests we can make our decision based on existing information

2 Expected Value of Partial Perfect Information (EVPPI)

- Value of eliminating uncertainty in subset of input parameters to decision model
- Infinite-sized trial measuring relative effects on 1-year survival
- Useful to identify which parameters responsible for decision uncertainty

- A new study will provide new data
 - Reducing (or even eliminating) uncertainty in a subset of model parameters
- Update the cost-effectiveness model
 - If the optimal decision changes, gain in monetary net benefit (NB = utility) from using new optimal treatment
 - If optimal decision unchanged, no gain in NB
- Expected VOI is the average gain in NB

Solution Expected Value of Perfect Information (EVPI)

- Value of completely resolving uncertainty in all input parameters to decision model
- Infinite-sized long-term follow-up trial measuring everything!
- Gives an upper-bound on the value of new study if EVPI is low, suggests we can make our decision based on existing information

2 Expected Value of Partial Perfect Information (EVPPI)

- Value of eliminating uncertainty in subset of input parameters to decision model
- Infinite-sized trial measuring relative effects on 1-year survival
- Useful to identify which parameters responsible for decision uncertainty

Separate State Sta

- Value of reducing uncertainty by conducting a study of given design
- $-\,$ Can compare the benefits and costs of a study with given design
- Is the proposed study likely to be a good use of resources? What is the optimal design?

	Parameters simulations					
lter/n	π_0	ρ		γ		
1	0.365	0.076		0.162		
2	0.421	0.024		0.134		
3	0.125	0.017		0.149		
4	0.117	0.073		0.120		
5	0.481	0.008		0.191		
6	0.163	0.127		0.004		
1000	0.354	0.067		0.117		

- Characterise uncertainty in the model parameters
 - In a full Bayesian setting, these are draws from the joint posterior distribution of heta
 - In a frequentist setting, these are typically Monte Carlo draws from a set of univariate distributions that describe some level of uncertainty around MLEs (two-step/hybrid)

	Parameters simulations				Expected utility	
lter/n	π_0	ρ		γ	$NB_0(\theta)$	$NB_1(\theta)$
1	0.365	0.076		0.162	19 214 751	19647706
2	0.421	0.024		0.134	17 165 526	17 163 407
3	0.125	0.017		0.149	18710928	16 458 433
4	0.117	0.073		0.120	16 991 321	18 497 648
5	0.481	0.008		0.191	19 772 898	18 662 329
6	0.163	0.127		0.004	17 106 136	18 983 331
1000	0.354	0.067		0.117	18 043 921	16 470 805
				Average	18 659 238	19 515 004

- Uncertainty in the parameters induces a distribution of decisions
 - Typically based on the **net benefits**: $NB_t(\theta) = k\mu_{et} \mu_{ct}$
 - In each parameters configuration can identify the optimal strategy
- Averaging over the uncertainty in θ provides t^{*}, the overall optimal decision given current uncertainty (= choose the intervention associated with highest expected utility)

		Parameters	simulatio	ıs	Expecte	ed utility	Maximum	Opportunity
lter/n	π_0	ρ		γ	$NB_0(\theta)$	$NB_1(\theta)$	net benefit	loss
1	0.365	0.076		0.162	19 214 751	19647706	19647706	0
2	0.421	0.024		0.134	17 165 526	17 163 407	17 165 526	2119.3
3	0.125	0.017		0.149	18710928	16 458 433	18710928	2 252 495.5
4	0.117	0.073		0.120	16 991 321	18 497 648	18 497 648	0
5	0.481	0.008		0.191	19 772 898	18 662 329	19772898	1 110 569.3
6	0.163	0.127		0.004	17 106 136	18 983 331	18 983 331	0
1000	0.354	0.067		0.117	18 043 921	16 470 805	18 043 921	1 573 116.0
				Average	18 659 238	19515004	19 741 589	226 585

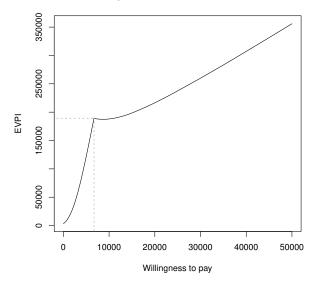
- Expected Value of "Perfect" Information (EVPI) summarises uncertainty in the decision
 - Defined as the average Opportunity Loss
 - Can also be computed as the difference between the average maximum expected utility under "perfect" information and the maximum expected utility overall:

$$\mathsf{EVPI} = \mathsf{E}_{\boldsymbol{\theta}} \underbrace{\left[\max_{t} \mathsf{NB}_{t}(\boldsymbol{\theta}) \right]}_{t} - \underbrace{\max_{t} \mathsf{E}_{\boldsymbol{\theta}} \left[\mathsf{NB}_{t}(\boldsymbol{\theta}) \right]}_{t} = \mathsf{E}_{\boldsymbol{\theta}} \underbrace{\left[\max_{t} \mathsf{NB}_{t}(\boldsymbol{\theta}) - \mathsf{NB}_{t^{*}}(\boldsymbol{\theta}) \right]}_{0}$$

Value of decision if we knew θ

Value of decision based on current information Opportunity lost from using t^* instead of the optimal t for θ

Expected Value of Information



- θ = all the model parameters; can be split into two subsets
 - The "parameters of interest" $\phi,$ e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
 - The "remaining parameters" $\psi,$ e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ , while leaving the current level of uncertainty on ψ unchanged

- θ = all the model parameters; can be split into two subsets
 - The "parameters of interest" $\phi,$ e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
 - The "remaining parameters" $\psi,$ e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ , while leaving the current level of uncertainty on ψ unchanged
- In formulæ:
 - First, consider the expected utility (EU) if we were able to learn ϕ but not ψ

 $\mathsf{E}_{\boldsymbol{\psi}|\boldsymbol{\phi}}\left[\mathsf{NB}_t(\boldsymbol{\theta})\right]$

- θ = all the model parameters; can be split into two subsets
 - The "parameters of interest" ϕ , e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
 - The "remaining parameters" $\psi,$ e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ , while leaving the current level of uncertainty on ψ unchanged
- In formulæ:
 - First, consider the expected utility (EU) if we were able to learn ϕ but not ψ
 - If we knew ϕ perfectly, best decision = the maximum of this EU

 $\max_t \mathsf{E}_{\psi|\phi}\left[\mathsf{NB}_t(\boldsymbol{\theta})\right]$

- θ = all the model parameters; can be split into two subsets
 - The "parameters of interest" ϕ , e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
 - The "remaining parameters" $\psi,$ e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ , while leaving the current level of uncertainty on ψ unchanged
- In formulæ:
 - First, consider the expected utility (EU) if we were able to learn ϕ but not ψ
 - If we knew ϕ perfectly, best decision = the maximum of this EU
 - Of course we cannot learn ϕ perfectly, so take the expected value

$$\mathsf{E}_{\boldsymbol{\phi}}\left[\max_{t}\mathsf{E}_{\boldsymbol{\psi}|\boldsymbol{\phi}}\left[\mathsf{NB}_{t}(\boldsymbol{\theta})\right]\right]$$

- θ = all the model parameters; can be split into two subsets
 - The "parameters of interest" ϕ , e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
 - The "remaining parameters" $\psi,$ e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ , while leaving the current level of uncertainty on ψ unchanged

In formulæ:

- First, consider the expected utility (EU) if we were able to learn ϕ but not ψ
- If we knew ϕ perfectly, best decision = the maximum of this EU
- Of course we cannot learn ϕ $\ensuremath{\mathsf{perfectly}}$, so take the expected value
- And compare this with the maximum expected utility overall

$$\mathsf{E}_{\phi}\left[\max_{t}\mathsf{E}_{\psi|\phi}\left[\mathsf{NB}_{t}(\theta)\right]\right] - \max_{t}\mathsf{E}_{\theta}\left[\mathsf{NB}_{t}(\theta)\right]$$

- θ = all the model parameters; can be split into two subsets
 - The "parameters of interest" $\phi,$ e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
 - The "remaining parameters" $\psi,$ e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ , while leaving the current level of uncertainty on ψ unchanged

In formulæ:

- First, consider the expected utility (EU) if we were able to learn ϕ but not ψ
- If we knew ϕ perfectly, best decision = the maximum of this EU
- Of course we cannot learn ϕ ${\it perfectly},$ so take the expected value
- And compare this with the maximum expected utility overall
- This is the EVPPI!

$$\mathsf{EVPPI} = \mathsf{E}_{\boldsymbol{\phi}} \left[\max_{t} \mathsf{E}_{\boldsymbol{\psi} \mid \boldsymbol{\phi}} \left[\mathsf{NB}_{t}(\boldsymbol{\theta}) \right] \right] - \max_{t} \mathsf{E}_{\boldsymbol{\theta}} \left[\mathsf{NB}_{t}(\boldsymbol{\theta}) \right]$$

- θ = all the model parameters; can be split into two subsets
 - The "parameters of interest" ϕ , e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
 - The "remaining parameters" $\psi,$ e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ , while leaving the current level of uncertainty on ψ unchanged

• In formulæ:

- First, consider the expected utility (EU) if we were able to learn ϕ but not ψ
- If we knew ϕ perfectly, best decision = the maximum of this EU
- Of course we cannot learn ϕ perfectly, so take the expected value
- And compare this with the maximum expected utility overall
- This is the EVPPI!

$$\mathsf{EVPPI} = \mathsf{E}_{\boldsymbol{\phi}}\left[\max_{t} \mathsf{E}_{\boldsymbol{\psi}|\boldsymbol{\phi}}\left[\mathsf{NB}_{t}(\boldsymbol{\theta})\right]\right] - \max_{t} \mathsf{E}_{\boldsymbol{\theta}}\left[\mathsf{NB}_{t}(\boldsymbol{\theta})\right]$$

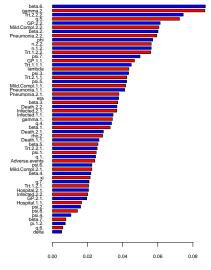
• That's the difficult part!

- Can do nested Monte Carlo, but takes forever to get accurate results
- Recent methods based on Gaussian Process regression very efficient & quick!

Strong et al Medical Decision Making. 2014; **34(3)**: 311-26. Heath et al Statistics in Medicine. 2016; **35(23)**: 4264-4280. http://savi.shef.ac.uk/SAVI/ https://egon.stats.ucl.ac.uk/projects/EVSI/

Summarising PSA + Research priority: Expected Value of Partial Perfect Information

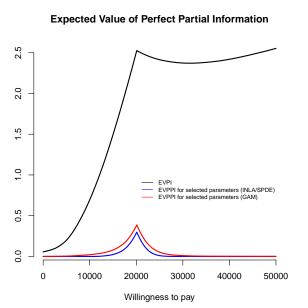
Info-rank plot for willingness to pay=20100

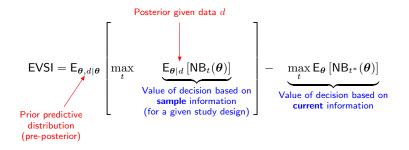


Proportion of total EVPI

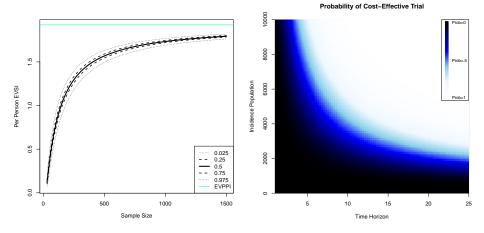
Gianluca Baio (UCL)

Bayesian methods in health economics



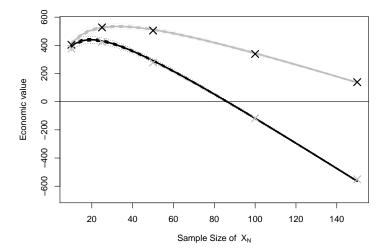


- Computationally complex
 - Requires specific knowledge of the model for (future/hypothetical) data collection
 - Again, recent methods have improved efficiency
- Can be used to drive design of new study (eg sample size calculations)



https://github.com/giabaio/EVSI https://egon.stats.ucl.ac.uk/projects/EVSI Heath et al (2018). https://arxiv.org/abs/1804.09590 Heath et al Medical Decision Making. 2017. 38(2): 163-173

Gianluca Baio (UCL)



Outline

- 1. Health economic evaluation
 - What is it?
 - How does it work?
- 2. Statistical modelling
 - Individual-level vs aggregated data
 - The importance of being a Bayesian

3. Some examples

- Individual level & partially observed data
- Survival analysis in HTA
- Value of information

4. Conclusions

- · Bayesian modelling particularly effective in health economic evaluations
- Allows the incorporation of external, additional information to the current analysis
 - Previous studies
 - Elicitation of expert opinions

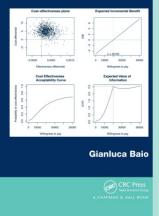
- · Bayesian modelling particularly effective in health economic evaluations
- Allows the incorporation of external, additional information to the current analysis
 - Previous studies
 - Elicitation of expert opinions
- In general, Bayesian models are more flexible and allow the inclusion of complex relationships between variables and parameters
 - This is particularly effective in decision-models, where information from different sources may be combined into a single framework
 - Useful in the case of individual-level data (eg from Phase III RCT)

- · Bayesian modelling particularly effective in health economic evaluations
- Allows the incorporation of external, additional information to the current analysis
 - Previous studies
 - Elicitation of expert opinions
- In general, Bayesian models are more flexible and allow the inclusion of complex relationships between variables and parameters
 - This is particularly effective in decision-models, where information from different sources may be combined into a single framework
 - Useful in the case of individual-level data (eg from Phase III RCT)
- Using MCMC methods, it is possible to produce the results in terms of simulations from the posterior distributions
 - These can be used to build suitable variables of cost and benefit
 - Particularly effective for running "probabilistic sensitivity analysis"

Shameless self marketing

Chapman & Hall/CRC Biostatistics Series

Bayesian Methods in Health Economics



Use R

Gianluca Baio Andrea Berardi Anna Heath

Bayesian Cost-Effectiveness Analysis with the R package BCEA

Gianluca Baio (UCL)

Seminar AUEB, 3 May 2018

Ευχαριστώ!

