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Outline

1. Health economic evaluation
– What is it?
– How does it work?

2. Statistical modelling
– Individual-level vs aggregated data
– The importance of being a Bayesian

3. Some examples — you get to choose...
– Individual level & partially observed data
– Survival analysis in HTA
– Value of information

4. Conclusions
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Health technology assessment (HTA)

Objective: Combine costs & benefits of a given intervention into a rational scheme for
allocating resources

Statistical
model

Economic
model

Decision
analysis

Uncertainty
analysis

• Estimates relevant population
parameters θ

• Varies with the type of
available data (& statistical
approach!)

• Combines the parameters to obtain
a population average measure for
costs and clinical benefits

• Varies with the type of available
data & statistical model used

• Summarises the economic model
by computing suitable measures of
“cost-effectiveness”

• Dictates the best course of
actions, given current evidence

• Standardised process

• Assesses the impact of uncertainty (eg in
parameters or model structure) on the
economic results

• Mandatory in many jurisdictions (including
NICE, in the UK)

• Fundamentally Bayesian!

∆e = fe(θ)

∆c = fc(θ)

. . .

ICER = g(∆e,∆c)

EIB = h(∆e,∆c; k)

. . .
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1. (“Standard”) Statistical modelling — Individual level data

Demographics HRQL data Resource use data Clinical outcome
ID Trt Sex Age . . . u0 u1 . . . uJ c0 c1 . . . cJ y0 y1 . . . yJ

1 1 M 23 . . . 0.32 0.66 . . . 0.44 103 241 . . . 80 y10 y11 . . . y1J

2 1 M 21 . . . 0.12 0.16 . . . 0.38 1 204 1 808 . . . 877 y20 y21 . . . y2J

3 2 F 19 . . . 0.49 0.55 . . . 0.88 16 12 . . . 22 y30 y31 . . . y3J

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yij = Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), . . .
uij = Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, . . . )
cij = Use of resources (drugs, hospital, GP appointments, . . . )

1 Compute individual QALYs and total costs as

ei =

J∑
j=1

(uij + uij−1)
δj
2

and ci =

J∑
j=0

cij ,
[

with: δj =
Timej − Timej−1

Unit of time

]

2 (Often implicitly) assume normality and linearity and model independently
individual QALYs and total costs by controlling for baseline values

ei = αe0 + αe1u0i + αe2Trti + εei [+ . . .], εei ∼ Normal(0, σe)

ci = αc0 + αc1c0i + αc2Trti + εci [+ . . .], εci ∼ Normal(0, σc)

3 Estimate population average cost and effectiveness differentials and use bootstrap to
quantify uncertainty
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QALYi = “Area under the curve”
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1. (“Standard”) Statistical modelling — Aggregated level data

1 Build a population level model (eg decision tree/Markov model)

Prophylactic NIs?

No

Yes

Yes
(p1)

No
(1− p1)

Cost with NIs + cost influenza

Cost with NIs

Yes
(p0)

No
(1− p0)

Cost influenza

Cost with no NIs

Outcomes

µe1 = −lp1

µe0 = −lp0

µc1 =
(
cNI + cInf

)
p1 + cNI (1− p1)

µc0 =
(
cNI + cInf

)
p0 + cNI (1− p0)

NB: in this case, the “data” are typically represented by summary statistics for the
parameters of interest θ = (p0, p1, l, . . .), but may also have access to a combination
of ILD and summaries

2 Use point estimates for the parameters to build the “base-case” (average) evaluation

3 Use resampling methods (eg bootstrap) to propage uncertainty in the point
estimates and perform uncertainty analysis
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“Standard” approach to HTA — “Two-stage”

Statistical
model

Economic
model

Decision
analysis

Uncertainty
analysis

• Estimates relevant population
parameters θ

• Varies with the type of
available data (& statistical
approach!)

• Combines the parameters to obtain
a population average measure for
costs and clinical benefits

• Varies with the type of available
data & statistical model used

• Summarises the economic model by
computing suitable measures of
“cost-effectiveness”

• Dictates the best course of actions,
given current evidence

• Standardised process

• Assesses the impact of uncertainty (eg
in parameters or model structure) on
the economic results

• Mandatory in many jurisdictions
(including NICE, in the UK)

• Fundamentally Bayesian!

1. Estimation (base-case)

θ

yp(y | θ)

θ̂ = f(Y )

“Two-stage approach” (Spiegelhalter, Abrams & Myles, 2004)

2. Probabilistic sensitivity analysis

⇒

θp(θ) ! g(θ̂)
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2./3. Economic modelling+Decision analysis — base-case scenario

Cost-effectiveness plane

Effectiveness differential

C
os

t d
iff

er
en

tia
l

∆e

∆c

∆e = E[e | θ̂1]︸ ︷︷ ︸
µ̂e1

− E[e | θ̂0]︸ ︷︷ ︸
µ̂e0

∆c = E[c | θ̂1]︸ ︷︷ ︸
µ̂c1

− E[c | θ̂0]︸ ︷︷ ︸
µ̂c0

ICER =
E[∆c]

E[∆e]
=
µ̂c1 − µ̂c0
µ̂e1 − µ̂e0

= Cost per outcome
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4. Uncertainty analysis

Cost-effectiveness plane

∆e

∆c

Effectiveness differential

C
os

t d
iff

er
en

tia
l

∆e = E[e | θ1]︸ ︷︷ ︸
µe1

− E[e | θ0]︸ ︷︷ ︸
µe0

∆c = E[c | θ1]︸ ︷︷ ︸
µc1

− E[c | θ0]︸ ︷︷ ︸
µc0

•
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Bayesian approach to HTA

Statistical
model

Economic
model

Decision
analysis

Uncertainty
analysis

• Estimates relevant population
parameters θ

• Varies with the type of
available data (& statistical
approach!)

• Combines the parameters to obtain
a population average measure for
costs and clinical benefits

• Varies with the type of available
data & statistical model used

• Summarises the economic model by
computing suitable measures of
“cost-effectiveness”

• Dictates the best course of actions,
given current evidence

• Standardised process

• Assesses the impact of uncertainty (eg
in parameters or model structure) on
the economic results

• Mandatory in many jurisdictions
(including NICE, in the UK)

• Fundamentally Bayesian!

Estimation & PSA (one stage)

θ

yp(y | θ)

p(θ) p(θ | y)

“Integrated approach” Spiegelhalter, Abrams & Myles (2004)
Baio, Berardi & Heath (2017)
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2./3./4. Economic modelling+Decision analysis+Uncertainty analysis

Cost-effectiveness plane

Effectiveness differential

C
os

t d
iff

er
en

tia
l

∆e

∆c

∆e = E[e | θ1]︸ ︷︷ ︸
µe1

− E[e | θ0]︸ ︷︷ ︸
µe0

∆c = E[c | θ1]︸ ︷︷ ︸
µc1

− E[c | θ0]︸ ︷︷ ︸
µc0

Gianluca Baio (UCL) Bayesian methods in health economics Seminar AUEB, 3 May 2018 9 / 36



2./3./4. Economic modelling+Decision analysis+Uncertainty analysis

Cost-effectiveness plane
∆e = E[e | θ1]︸ ︷︷ ︸

µe1

− E[e | θ0]︸ ︷︷ ︸
µe0

∆c = E[c | θ1]︸ ︷︷ ︸
µc1

− E[c | θ0]︸ ︷︷ ︸
µc0

Effectiveness differential

C
os

t d
iff

er
en

tia
l

∆e

∆c

ICER =
E[∆c]

E[∆e]
=

E[µc1]− E[µc0]

E[µe1]− E[µe0]

= Cost per outcome

Gianluca Baio (UCL) Bayesian methods in health economics Seminar AUEB, 3 May 2018 9 / 36



Bayesians do it better...

• Potential correlation between costs & clinical benefits [Both ILD and ALD]

– Strong positive correlation — effective treatments are innovative and result from
intensive and lengthy research ⇒ are associated with higher unit costs

– Negative correlation — more effective treatments may reduce total care pathway costs
e.g. by reducing hospitalisations, side effects, etc.

– Because of the way in which standard models are set up, bootstrapping generally only
approximates the underlying level of correlation — MCMC does a better job!

• Joint/marginal normality not realistic [Mainly ILD]

– Costs usually skewed and benefits may be bounded in [0; 1]
– Can use transformation (e.g. logs) — but care is needed when back transforming to

the natural scale
– Should use more suitable models (e.g. Beta, Gamma or log-Normal) — generally

easier under a Bayesian framework

• Particularly as the focus is on decision-making (rather than just inference), we need
to use all available evidence to fully characterise current uncertainty on the model
parameters and outcomes [Mainly ALD]

– A Bayesian approach is helpful in combining different sources of information
– Propagating uncertainty is a fundamentally Bayesian operation!
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• Joint/marginal normality not realistic [Mainly ILD]

– Costs usually skewed and benefits may be bounded in [0; 1]
– Can use transformation (e.g. logs) — but care is needed when back transforming to

the natural scale
– Should use more suitable models (e.g. Beta, Gamma or log-Normal) — generally

easier under a Bayesian framework

• Particularly as the focus is on decision-making (rather than just inference), we need
to use all available evidence to fully characterise current uncertainty on the model
parameters and outcomes [Mainly ALD]

– A Bayesian approach is helpful in combining different sources of information
– Propagating uncertainty is a fundamentally Bayesian operation!
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Outline

1. Health economic evaluation
– What is it?
– How does it work?

2. Statistical modelling
– Individual-level vs aggregated data
– The importance of being a Bayesian

3. Some examples

– Individual level & partially observed data ILD+Missing data

– Survival analysis in HTA Survival analysis

– Value of information Value of information

4. Conclusions

Gianluca Baio (UCL) Bayesian methods in health economics Seminar AUEB, 3 May 2018 11 / 36



Bayesian HTA in action — Individual level (& missing) data

• In general, can represent the joint distribution as p(e, c) = p(e)p(c | e) = p(c)p(e | c)
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Bayesian HTA in action — Individual level (& missing) data

• In general, can represent the joint distribution as p(e, c) = p(e)p(c | e) = p(c)p(e | c)

ci

φicτc

µc[. . .]

ei

φie

τe

µe [. . .]

β1

Conditional model for c

Marginal model for e

ei ∼ p(e | φei, τe)
ge(φei) = α0 [+ . . .]

µe = g−1
e (α0)

φei = location
τe = ancillary

φci = location
τc = ancillary

φei = marginal mean
τe = marginal variance

φci = conditional mean
τc = conditional variance

φei = marginal mean
τe = marginal scale

φci = conditional mean
τc = shape
τc/φci = rate

ci ∼ p(c | e, φci, τc)
gc(φci) = β0 + β1(ei − µe) [+ . . .]

µc = g−1
c (β0)

• For example:

• Combining “modules” and fully characterising uncertainty about deterministic
functions of random quantities is relatively straightforward using MCMC

• Prior information can help stabilise inference (especially with sparse data!), eg

– Cancer patients are unlikely to survive as long as the general population
– ORs are unlikely to be greater than ±5
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Example: MenSS trial

• The MenSS pilot RCT evaluates the cost-effectiveness of a new digital intervention
to reduce the incidence of STI in young men with respect to the SOC

– QALYs calculated from utilities (EQ-5D 3L)
– Total costs calculated from different components (no baseline)
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Example: MenSS trial Partially observed data

• The MenSS pilot RCT evaluates the cost-effectiveness of a new digital intervention
to reduce the incidence of STI in young men with respect to the SOC

– QALYs calculated from utilities (EQ-5D 3L)
– Total costs calculated from different components (no baseline)

Time Type of outcome observed (%) observed (%)
Control (n1=75) Intervention (n2=84)

Baseline utilities 72 (96%) 72 (86%)
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6 months utilities and costs 35 (47%) 23 (27%)

12 months utilities and costs 43 (57%) 36 (43%)
Complete cases utilities and costs 27 (44%) 19 (23%)
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Example: MenSS trial Skewness & “structural values”

• The MenSS pilot RCT evaluates the cost-effectiveness of a new digital intervention
to reduce the incidence of STI in young men with respect to the SOC

– QALYs calculated from utilities (EQ-5D 3L)
– Total costs calculated from different components (no baseline)
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Modelling Gabrio et al. (2018). https://arxiv.org/abs/1801.09541

1 Bivariate Normal
– Simpler and closer to “standard” frequentist model
– Account for correlation between QALYs and costs

2 Beta-Gamma
– Account for
– Model the relevant ranges: QALYs ∈ (0, 1) and costs ∈ (0,∞)
– But: needs to rescale observed data e∗it = (eit − ε) to avoid spikes at 1

3 Hurdle model
– Model eit as a mixture to account for correlation between outcomes, model the

relevant ranges and account for structural values
– May expand to account for partially observed baseline utility u0it

cit

φictψct

µct βt

eit

φiet

ψet

µet u∗0it αt
Marginal model for e

eit ∼ Normal(φeit, ψet)

φeit = µet + αt(u0it − ū0t)

φeit = µet + αtu
∗
0it

Conditional model for c | e
cit | eit ∼ Normal(φcit, ψct)

φcit = µct + βt(eit − µet)
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logit(φeit) = µ<1
et + αtu

∗
0it

e∗it = πite
1
it + (1− πit)e<1

it

µet = (1− π̄t)µ<1
et + π̄t

Conditional model for c | e∗

cit | e∗it ∼ Gamma(ψctφcit, ψct)

log(φcit) = µct + βt(e
∗
it − µet)

Gianluca Baio (UCL) Bayesian methods in health economics Seminar AUEB, 3 May 2018 14 / 36



Results Complete only vs all cases

Hurdle Model

mean (90% HPD)

0.90 (0.88; 0.93)

0.88 (0.85; 0.91)

Beta−Gamma

0.88 (0.86; 0.91)

0.88 (0.85; 0.90)

0.75 0.80 0.85 0.90 0.95 1.00

Bivariate Normal

0.90 (0.88; 0.93)

0.87 (0.85; 0.90)

QALYs

Hurdle Model

mean (90% HPD)

0.90 (0.87; 0.94)

0.90 (0.86; 0.94)

Beta−Gamma

0.88 (0.85; 0.92)

0.91 (0.88; 0.94)

0.75 0.80 0.85 0.90 0.95 1.00

Bivariate Normal

0.90 (0.87; 0.94)

0.92 (0.88; 0.95)

QALYs

Control Intervention

Complete cases only
All cases (missing at random, MAR)
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Results Complete only vs all cases

Hurdle Model

mean (90% HPD)

220 (118; 329)

198 (111; 282)
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Bayesian multiple imputation (under MAR)
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Outline

1. Health economic evaluation
– What is it?
– How does it work?

2. Statistical modelling
– Individual-level vs aggregated data
– The importance of being a Bayesian

3. Some examples
– Individual level & partially observed data

– Survival analysis in HTA Survival analysis

– Value of information Value of information

4. Conclusions
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Survival analysis in HTA Trial data — Kaplan Meier curves

• Survival data are often the main outcome in clinical studies relevant for HTA
– Cancer drugs (progression-free/overall survival time): ≈ 40% of NICE appraisals!
– Need to extrapolate, for economic modelling purposes. BUT: Limited follow up from

trials, not consistent with time horizon of economic model
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Survival analysis in HTA ...To be or not to be (Bayesian)?...

• Survival data are often the main outcome in clinical studies relevant for HTA
– Cancer drugs (progression-free/overall survival time): ≈ 40% of NICE appraisals!
– Need to extrapolate, for economic modelling purposes. BUT: Limited follow up from

trials, not consistent with time horizon of economic model

• When there is strong correlation among the survival parameters, the results of
uncertainty analysis may be (strongly) biased under a more simplistic
frequentist model

– This matters most in health economics, because this bias carries over the economic
modelling, optimal decision making and assessment of the impact of parametric
uncertainty!

– A full Bayesian approach propagates directly correlation and uncertainty in the
model parameters through to the survival curves and the economic model

• For more complex models, MLE-based estimates may fail to converge
– This may be an issue for multi-parameter models, where limited data (not compounded

by relevant prior information) are not enough to fit all the model parameters
– NB: you would normally need to fit more complex models for cases where the survival

curves are “strange” and so the usual parametric models fail to provide sufficient fit
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• Survival data are often the main outcome in clinical studies relevant for HTA
– Cancer drugs (progression-free/overall survival time): ≈ 40% of NICE appraisals!
– Need to extrapolate, for economic modelling purposes. BUT: Limited follow up from

trials, not consistent with time horizon of economic model

Model fit for the Generalised F model , obtained using Flexsurvreg
(Maximum Likelihood Estimate). Running time: 1.157 seconds

mean se L95% U95%
mu 2.29139696 0.0798508 2.13489e+00 2.44790e+00
sigma 0.58729598 0.0725044 4.61076e-01 7.48069e-01
Q 0.84874994 0.2506424 3.57500e-01 1.34000e+00
P 0.00268265 0.0902210 6.33197e-32 1.13655e+26
as.factor(arm)1 0.34645851 0.0877892 1.74395e-01 5.18522e-01

Model fit for the Generalised F model , obtained using Stan
(Bayesian inference via Hamiltonian Monte Carlo). Running time: 26.692 seconds

mean se L95% U95%
mu 2.256760 0.3455163 0.0897086 0.0865904
sigma 0.507861 0.0762112 0.3608566 0.6582047
Q 0.700062 0.3358360 0.0786118 1.3880582
P 1.131968 0.5837460 0.3908284 2.6342762
as.factor(arm)1 0.345516 0.0865904 0.1745665 0.5176818
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Example: ICD & cardiac death Benaglia et al, Stat in Med (2015)

Set up/interventions

• ICD (Implantable Cardioverter Defibrillators) compared to anti-arrhythmic drugs
(AAD) for prevention of sudden cardiac death in people with cardiac arrhythmia

Data

• Individual data from cohort of 535 UK cardiac arrhythmia patients implanted with
ICDs between 1991 and 2002

• Meta-analysis of three (non-UK) RCTs providing published HRs
– Relatively short-term follow-up: approximately 75% people, followed for less than 5

years, maximum 10 years

• UK population mortality statistics by age, sex, cause of death

Objective

• Estimate the survival curve over the lifetime of ICD and AAD patients in UK

• Extrapolate the output to inform the wider economic model
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Basic idea

Use UK population data (matched by age/sex) to “anchor” the ICD population risk
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Basic idea

Use UK population data (matched by age/sex) to “anchor” the ICD population risk

• Perhaps the easiest way of doing this anchoring is to relate the hazards between the
two populations — eg proportional hazard ratio:

hICD(t) = eβhUK(t) ⇔ HR =
hICD(t)

hUK(t)
= eβ = Constant

• Relatively easy to model — but probably very unrealistic!
– ICD patients are at (much?) greater risk of arrhythmia death
– If the proportion of deaths caused by arrythmia changes over time, we would induce

bias, because we would be extrapolate a constant HR for all causes mortality

• Formally account for multiple mortality causes (Poly-Weibull model):

hICD(t) = harr
ICD(t) + hoth

ICD(t)

= eβharr
UK(t) + hoth

UK(t)

= eβα1µ1t
α1−1 + α2µ2t

α2−1

• This assumes that:

– Arrhythmia hazard is proportional to matched UK population
– Other causes hazard is identical to matched UK population
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� You don’t know what you’re doing!... � https://youtu.be/fOSU59DP760

• To set up a full Bayesian model including a reasonable specification of the priors can
be a hard task

• Often people claim that they have “no prior information”.

But don’t they?...

• In the ICD case, age at entry is around 60 — we know that people won’t survive for
more than other 60 years

– Setting a prior for the scale µi ∼ Uniform(0, 100) implies that the prior mean survival
of the resulting Weibull distribution is

µiΓ

(
1 +

1

α

)
< 60

• Can also include some knowledge on the shape α and the coefficient β to limit their
variations in reasonable ranges
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Results

• Ignoring cause-specific mortality (Weibull) results in larger bias, especially for females
(because the arrhythmia proportion of deaths does vary over time in that subgroup)

End
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Outline

1. Health economic evaluation
– What is it?
– How does it work?

2. Statistical modelling
– Individual-level vs aggregated data
– The importance of being a Bayesian

3. Some examples

– Individual level & partially observed data ILD+Missing data

– Survival analysis in HTA

– Value of information Value of information

4. Conclusions
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Knowledge is power?... (A tale of two stupid examples)

• Example 1: Intervention t = 1 is the most cost-effective, given
current evidence

– Pr(t = 1 is cost-effective) = 0.51
– If we get it wrong: Increase in costs = £3

If we get it wrong: Decrease in effectiveness = 0.000001 QALYs
– Large uncertainty/negligible consequences ⇒ can afford

uncertainty

• Example 2: Intervention t = 1 is the most cost-effective, given
current evidence

– Pr(t = 1 is cost-effective) = 0.999
– If we get it wrong: Increase in costs = £1 000 000 000

If we get it wrong: Decrease in effectiveness = 999999 QALYs
– Tiny uncertainty/dire consequences ⇒ probably should think

about it...
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Evidence Based Decision-Making and Value of Information (VoI)

Combine all available
evidence (efficacy,
economic, utility,
natural history)

Make decision
(adopt/reject/carry

out further research)

Design and run
studies to collect

out more evidence)

1. Systematic
Review

2. Evidence
Synthesis

3. Cost-effectiveness
analysis

4. VoI
Analysis

5. Trial/
Study Design

6. Statistical
Analysis/

Publication

Process inherently Bayesian!
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VoI: Basic idea

• A new study will provide new data
– Reducing (or even eliminating) uncertainty in a subset of model parameters

• Update the cost-effectiveness model
– If the optimal decision changes, gain in monetary net benefit (NB = utility) from using

new optimal treatment
– If optimal decision unchanged, no gain in NB

• Expected VOI is the average gain in NB

1 Expected Value of Perfect Information (EVPI)
– Value of completely resolving uncertainty in all input parameters to decision model
– Infinite-sized long-term follow-up trial measuring everything!
– Gives an upper-bound on the value of new study — if EVPI is low, suggests we can

make our decision based on existing information

2 Expected Value of Partial Perfect Information (EVPPI)
– Value of eliminating uncertainty in subset of input parameters to decision model
– Infinite-sized trial measuring relative effects on 1-year survival
– Useful to identify which parameters responsible for decision uncertainty

3 Expected Value of Sample Information (EVSI)
– Value of reducing uncertainty by conducting a study of given design
– Can compare the benefits and costs of a study with given design
– Is the proposed study likely to be a good use of resources? What is the optimal design?

Gianluca Baio (UCL) Bayesian methods in health economics Seminar AUEB, 3 May 2018 26 / 36



VoI: Basic idea and relevant measures

• A new study will provide new data
– Reducing (or even eliminating) uncertainty in a subset of model parameters

• Update the cost-effectiveness model
– If the optimal decision changes, gain in monetary net benefit (NB = utility) from using

new optimal treatment
– If optimal decision unchanged, no gain in NB

• Expected VOI is the average gain in NB

1 Expected Value of Perfect Information (EVPI)
– Value of completely resolving uncertainty in all input parameters to decision model
– Infinite-sized long-term follow-up trial measuring everything!
– Gives an upper-bound on the value of new study — if EVPI is low, suggests we can

make our decision based on existing information

2 Expected Value of Partial Perfect Information (EVPPI)
– Value of eliminating uncertainty in subset of input parameters to decision model
– Infinite-sized trial measuring relative effects on 1-year survival
– Useful to identify which parameters responsible for decision uncertainty

3 Expected Value of Sample Information (EVSI)
– Value of reducing uncertainty by conducting a study of given design
– Can compare the benefits and costs of a study with given design
– Is the proposed study likely to be a good use of resources? What is the optimal design?

Gianluca Baio (UCL) Bayesian methods in health economics Seminar AUEB, 3 May 2018 26 / 36



VoI: Basic idea and relevant measures

• A new study will provide new data
– Reducing (or even eliminating) uncertainty in a subset of model parameters

• Update the cost-effectiveness model
– If the optimal decision changes, gain in monetary net benefit (NB = utility) from using

new optimal treatment
– If optimal decision unchanged, no gain in NB

• Expected VOI is the average gain in NB

1 Expected Value of Perfect Information (EVPI)
– Value of completely resolving uncertainty in all input parameters to decision model
– Infinite-sized long-term follow-up trial measuring everything!
– Gives an upper-bound on the value of new study — if EVPI is low, suggests we can

make our decision based on existing information

2 Expected Value of Partial Perfect Information (EVPPI)
– Value of eliminating uncertainty in subset of input parameters to decision model
– Infinite-sized trial measuring relative effects on 1-year survival
– Useful to identify which parameters responsible for decision uncertainty

3 Expected Value of Sample Information (EVSI)
– Value of reducing uncertainty by conducting a study of given design
– Can compare the benefits and costs of a study with given design
– Is the proposed study likely to be a good use of resources? What is the optimal design?

Gianluca Baio (UCL) Bayesian methods in health economics Seminar AUEB, 3 May 2018 26 / 36



VoI: Basic idea and relevant measures

• A new study will provide new data
– Reducing (or even eliminating) uncertainty in a subset of model parameters

• Update the cost-effectiveness model
– If the optimal decision changes, gain in monetary net benefit (NB = utility) from using

new optimal treatment
– If optimal decision unchanged, no gain in NB

• Expected VOI is the average gain in NB

1 Expected Value of Perfect Information (EVPI)
– Value of completely resolving uncertainty in all input parameters to decision model
– Infinite-sized long-term follow-up trial measuring everything!
– Gives an upper-bound on the value of new study — if EVPI is low, suggests we can

make our decision based on existing information

2 Expected Value of Partial Perfect Information (EVPPI)
– Value of eliminating uncertainty in subset of input parameters to decision model
– Infinite-sized trial measuring relative effects on 1-year survival
– Useful to identify which parameters responsible for decision uncertainty

3 Expected Value of Sample Information (EVSI)
– Value of reducing uncertainty by conducting a study of given design
– Can compare the benefits and costs of a study with given design
– Is the proposed study likely to be a good use of resources? What is the optimal design?

Gianluca Baio (UCL) Bayesian methods in health economics Seminar AUEB, 3 May 2018 26 / 36



Summarising PSA: Expected Value of Perfect Information

Parameters simulations Expected utility Maximum Opportunity
Iter/n π0 ρ . . . γ NB0(θ) NB1(θ) net benefit loss

1 0.365 0.076 . . . 0.162 19 214 751 19 647 706 19 647 706 0

2 0.421 0.024 . . . 0.134 17 165 526 17 163 407 17 165 526 2 119.3

3 0.125 0.017 . . . 0.149 18 710 928 16 458 433 18 710 928 2 252 495.5

4 0.117 0.073 . . . 0.120 16 991 321 18 497 648 18 497 648 0

5 0.481 0.008 . . . 0.191 19 772 898 18 662 329 19 772 898 1 110 569.3

6 0.163 0.127 . . . 0.004 17 106 136 18 983 331 18 983 331 0

. . . . . . . . . . . .

1000 0.354 0.067 . . . 0.117 18 043 921 16 470 805 18 043 921 1 573 116.0

Average 18 659 238 19 515 004 19 741 589 226 585

• Characterise uncertainty in the model parameters
– In a full Bayesian setting, these are draws from the joint posterior distribution of θ
– In a frequentist setting, these are typically Monte Carlo draws from a set of univariate

distributions that describe some level of uncertainty around MLEs (two-step/hybrid)
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Summarising PSA: Expected Value of Perfect Information

Parameters simulations Expected utility Maximum Opportunity
Iter/n π0 ρ . . . γ NB0(θ) NB1(θ) net benefit loss

1 0.365 0.076 . . . 0.162 19 214 751 19 647 706 19 647 706 0

2 0.421 0.024 . . . 0.134 17 165 526 17 163 407 17 165 526 2 119.3

3 0.125 0.017 . . . 0.149 18 710 928 16 458 433 18 710 928 2 252 495.5

4 0.117 0.073 . . . 0.120 16 991 321 18 497 648 18 497 648 0

5 0.481 0.008 . . . 0.191 19 772 898 18 662 329 19 772 898 1 110 569.3

6 0.163 0.127 . . . 0.004 17 106 136 18 983 331 18 983 331 0

. . . . . . . . . . . .

1000 0.354 0.067 . . . 0.117 18 043 921 16 470 805 18 043 921 1 573 116.0

Average 18 659 238 19 515 004 19 741 589 226 585

• Uncertainty in the parameters induces a distribution of decisions
– Typically based on the net benefits: NBt(θ) = kµet − µct
– In each parameters configuration can identify the optimal strategy

• Averaging over the uncertainty in θ provides t∗, the overall optimal decision given
current uncertainty (= choose the intervention associated with highest
expected utility)
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Parameters simulations Expected utility Maximum Opportunity
Iter/n π0 ρ . . . γ NB0(θ) NB1(θ) net benefit loss

1 0.365 0.076 . . . 0.162 19 214 751 19 647 706 19 647 706 0
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1000 0.354 0.067 . . . 0.117 18 043 921 16 470 805 18 043 921 1 573 116.0

Average 18 659 238 19 515 004 19 741 589 226 585

• Expected Value of “Perfect” Information (EVPI) summarises uncertainty in
the decision

– Defined as the average Opportunity Loss
– Can also be computed as the difference between the average maximum expected

utility under “perfect” information and the maximum expected utility overall:

EVPI = Eθ

[
max
t

NBt(θ)

]
︸ ︷︷ ︸
Value of decision

if we knew θ

− max
t

Eθ [NBt(θ)]︸ ︷︷ ︸
Value of decision based
on current information

= Eθ

[
max
t

NBt(θ)− NBt∗ (θ)

]
︸ ︷︷ ︸
Opportunity lost from using t∗

instead of the optimal t for θ
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Summarising PSA: Expected Value of Perfect Information
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Summarising PSA + Research priority: Expected Value of Partial Perfect Information

• θ = all the model parameters; can be split into two subsets
– The “parameters of interest” φ, e.g. prevalence of a disease, HRQL measures, length

of stay in hospital, ...
– The “remaining parameters” ψ, e.g. cost of treatment with other established

medications,

• We are interested in quantifying the value of gaining more information on φ, while
leaving the current level of uncertainty on ψ unchanged

• In formulæ:
– First, consider the expected utility (EU) if we were able to learn φ but not ψ
– If we knew φ perfectly, best decision = the maximum of this EU
– Of course we cannot learn φ perfectly, so take the expected value
– And compare this with the maximum expected utility overall
– This is the EVPPI!

EVPPI = Eφ

[
max
t

Eψ|φ [NBt(θ)]

]
−max

t
Eθ [NBt(θ)]

• That’s the difficult part!

– Can do nested Monte Carlo, but takes forever to get accurate results
– Recent methods based on Gaussian Process regression very efficient & quick!

Strong et al Medical Decision Making. 2014; 34(3): 311-26. http://savi.shef.ac.uk/SAVI/
Heath et al Statistics in Medicine. 2016; 35(23): 4264-4280. https://egon.stats.ucl.ac.uk/projects/EVSI/
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Summarising PSA + Research priority: Expected Value of Partial Perfect Information
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Summarising PSA + Research priority: Expected Value of Partial Perfect Information

Expected Value of Perfect Partial Information
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Research priority: Expected Value of Sample Information

EVSI = Eθ,d|θ


max
t

Eθ|d [NBt(θ)]︸ ︷︷ ︸
Value of decision based on

sample information
(for a given study design)


− max

t
Eθ [NBt∗(θ)]︸ ︷︷ ︸

Value of decision based on
current information

Prior predictive
distribution

(pre-posterior)

Posterior given data d

• Computationally complex
– Requires specific knowledge of the model for (future/hypothetical) data collection
– Again, recent methods have improved efficiency

• Can be used to drive design of new study (eg sample size calculations)
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Research priority: Expected Value of Sample Information
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https://github.com/giabaio/EVSI
https://egon.stats.ucl.ac.uk/projects/EVSI
Heath et al (2018). https://arxiv.org/abs/1804.09590
Heath et al Medical Decision Making. 2017. 38(2): 163-173
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Research priority: Expected Value of Sample Information
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Outline

1. Health economic evaluation
– What is it?
– How does it work?

2. Statistical modelling
– Individual-level vs aggregated data
– The importance of being a Bayesian

3. Some examples

– Individual level & partially observed data ILD+Missing data

– Survival analysis in HTA Survival analysis

– Value of information

4. Conclusions
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Conclusions

• Bayesian modelling particularly effective in health economic evaluations

• Allows the incorporation of external, additional information to the current analysis
– Previous studies
– Elicitation of expert opinions

• In general, Bayesian models are more flexible and allow the inclusion of complex
relationships between variables and parameters

– This is particularly effective in decision-models, where information from different
sources may be combined into a single framework

– Useful in the case of individual-level data (eg from Phase III RCT)

• Using MCMC methods, it is possible to produce the results in terms of simulations
from the posterior distributions

– These can be used to build suitable variables of cost and benefit
– Particularly effective for running “probabilistic sensitivity analysis”
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