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Beginnings: Robbins 1952

M

’»;5‘ — — -q
b 7 7

M2
o

Example
m
s g,

” 5
X1, X2, X13, o0

g
— -
Xz1, X22, X23, vus
Xip =
~1 patient dies

1 patient recovers  with probability p;

with probability 1= p;
Traditional Allocation

Assign 100 to II; observe 1,-1,-1,-1,-1, ,
Assign 100 to II;  observe

L1-1,11,,

10
100
' 100 _ gq _ _ 99
<., 1with T1% =99 L= f2 = 1o
“Killed” 90 on N1 to learn
?
CAN WE DO BETTER 7 .

1,1 with 3100 = 10— 90 — i =



-
Early Work Robbins 1952

Given 2 populations (treatments) that generate outcomes:

M X{,X3,... with g =E[X]]= fj'sz xdFi(x) < oo unknown

2 Tplm
Se(n) = > Xi (max)
i=1 k=1
Defined measures of regret:
Ti(n)
Ry = nu* — Sx(n) = nu™ — Z Xk,
i=1 k=1

wo = max{p1, pa}
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-
Early Work Robbins 1952

Constructed a modified ‘play the winner'(greedy)
(outside two sparse sequences of forced choices) policy, 7r:

Srr(n)/n — " as n — oo, with probability one

ie.,
Rrr(n) = o(n) (a.s.), as n — cc.
Let a, > 0 (n=1,2,..., i =1,2) be two sequences constants such that:
@ for every fixed i, a, is increasing in n > 1

n— o0

lim (Z la}(>0 + lai>0)/n = 0
k=1

For n+1> 2let: jy: ji» = max{fii(n) }

1 if3k : ag=n+1
Rn+1)={2 if3k : 2=n+1

*

Jjn otherwise
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N
The MAB Problem: Lai - Robbins 1985

M. X{,X4,... f(x;0;) unknown 6; € ©.

where f(.;.) is known univariate density w.r.t. some measure v

Let § = (91,...,?/\/)

pi = p(0;) = EX], p* = p(0;+), 8i(0;) = p* — p(0;),

1(6,6') = [ _In F(Xe f(x;0)dv(x) be K-L divergence between f(x;0) and f(x;6’).

f(x;07)

Regret: '
Re(n) = Re(nl0) = nu* — ESx(n) = Z AE [Ti(m)]
i=1

Types of Policies
@ UC u-consistent m: R(n|g) = o(n) (as n — o0) V @
@ UF u-fast m: Rx(n|0) = O(log n) = M(8) logn + o(log n) = o(n®), Ya >0
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-
Google Website Optimizer - CRO 2013

Not only Multivariate Testing - Multi Armed Bandit (Google) Experiments
7\i‘Amuwl

Google Experiments with Multi-Armed Bandits for Improved
Conversions

Google Experiments: Is The Multi Armed
Bandit Stealing Your CRO Success?

Posted by Eliyahu Speiser on February 5, 2013 1 comments

Image Atribution: Antoine Taveneaux.

Conversion Rate Optimization (CRO)

1 . . . . . .
http://www.anuvatech.com/blog/google-experiments-with-multi-armed-bandits-for-improved-conversions /

http://3doordigital.com /google-experiments-cro-success/
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Motivation

@ Medical treatments limited by

o cost of materials
o limited resources

o Different advertisements for a product

e cost of media
e each medium provides a limited capacity
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-
Problem Setting

Multi-armed bandit problem in the frequentist framework
Average reward maximization (asymptotic)

Sampling costs-constraints

Unknown parameters of reward distributions

Odysseas Kanavetas Mathematical Institute o.kanavetas@math.leidenuniv.nl 8/38



Definition of Multi-Constrained MAB Problem

@ Sequential Sampling from k Statistical Populations
@ Each period population /i is sampled from:
o X;=random reward ~ f;(:|6;) (p.d.f. or p.m.f)

o Ui = E(X,|9,)

o 0=1(01,...,6k)

o L types of resources

o c/= type-j units of used resources per sampling j=1,...,L
o C)=type-j units of available resources (on average basis)

@ Objective: Identify a sampling policy for which
e The long run expected average used recources per period of each type
does not exceed the corresponding type of G.
e The long run expected average reward per sample is maximized.
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A Linear Programming Formulation

xj=Fraction of time periods allocated to sampling from population j

k
z(0) =max} i pix
Zjl'(:l lexj < C(}

Primal kL .
Zjl;zl X < G
Zj:lxj =1

x; >0, Vj
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A Linear Programming Formulation

zp(0) = min G+ ...+ Clar + g1
clgr+ ...+ clgL+ 81 >
Dual :

¢&+m+¢&+&HZMk
8L+1 € Ragj >0,j=1,..,L

Optimality Condition: ¢, > 0,m=1,... k, where

o5(0) = chgf + ...+ chel + 8l — 1tm > 0.

A basic matrix B satisfying this condition is optimal.
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Model Description

@ Sequential Sampling from k Statistical Populations
@ Each period population i is sampled from:

e X;=random reward ~ f;(:|6;) (p.d.f. or p.m.f)
o ;i = E(Xi]6))

o 0=1(01,...,6k)

e c¢;=sampling cost

o Co=cost budget (on average basis)

@ Objective: Identify a sampling policy for which

e The long run expected average cost per period does not exceed Cy.
e The long run expected average reward per sample is maximized.
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A Linear Programming Formulation

xj=Fraction of time periods allocated to sampling from population j

k
z(#) = max j=1 HjXj
>i-16% <G

k
Zj:lxj =1
xj = 0, Vj

Primal

z(0) =min CGow + v
Dual gw+v  >upp, j=1,...k
w >0, veR
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Optimality Conditions

Two Cases for Optimal Solution

Casel B= ( ii ?),forsome i,j, ¢ < G <g.

; _ CGo—g — G — P
In this case x; = T XN T =g Xm=0,m%#1i,j.

: —u; —
Dual Solution w = &=, — SEZGH

Ci—C¢j Ci—Cj

Optimality Condition: ¢, > 0,m=1,... k, where

Cm — Cj
Gm = CmW + V= pim = p1i + (i = )= —— =

Hm
C,'—CJ'
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Optimality Conditions

Case 2 Bz(ii é),forsomei, ¢ < (.

In this case x; = 1, X, =0, m # |.
Dual Solution w =0, v = p;.

Optimality Condition: ¢, > 0,m=1,... k, where

Om=CmW +V — lm = [1j — lm
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Incomplete Information

The Incomplete Information Framework

Recall that the rewards X; ~ f;(+0;),i = 1,..., k.
We assume that

e 0;,i=1,...,k are unknown parameters
e 0, €0, QE@:HLl@i
@ Multi-Armed Bandit Framework

If no cost constraint were imposed, we would have a standard multi-armed
bandit model with asymptotic average reward criterion.

Robbins(1952), Lai and Robbins (1985), Agrawal, Teneketzis and
Anantharam (1989), Burnetas and Katehakis (1996), Kulkarni and Lugosi
(2000), etc.

In the presence of side-constraints more work is required.
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Incomplete Information

Adaptive Allocation Policies

When @ is unknown, a sampling policy that uses this information is not
admissible. Only adaptive policies are allowed.

Let A;, Y; be the population selected and the observed outcome at period
t. Let hy = (a1,x1,...,at-1,%t—1) be the history of actions and
observations available at period t.

An adaptive policy is defined as a sequence ™ = (71, m2,...) of
history-dependent probability distributions on {1,..., k}, so that

Wt(f; ht) = P(At :j‘ht)
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Incomplete Information

Performance Measures

Define
o T,(j) =>_7_1 1(Ar = j)=number of samples from j in first n periods

o Sr(0) = E5(C7_1 Vo) = o5y 1i(9)EG Ta())
Expected n—period reward

o C(9) = E5(3{_1 ca) = X1 GEf Tal))
Expected n—period cost
Definition
A policy 7 is called
o feasible (w € NF), if limsup,_,.. & < ¢y, V0 € ©

o consistent (r € M), if m € NF and lim, ., & — 7(0), Vo € ©
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Consistent Policies

Consistent Policies

Do consistent policies exist?
Yes, under very mild conditions. Construction is easy, one way is by using
forced selections at sparse sequences of time periods (Robbins, 1952).

Assume that there exist consistent estimators /i . of y;(6;). Let
B, = (A1 d = 1, k).

Define the certainty-equivalence LP : 2, = z(i ) and X, the

’

corresponding primal solution : Z, = En Xp-
X, suggests a sampling policy for period n: Randomize among {1,..., k}

according to distribution X,,.
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Consistent Policies

Consistent Policies

To ensure that lim,_o én = (), consider k nonoverlapping sparse
sequence of positive integers

7}-:{7}"m’ m:172,...},j:1,...,k,

such that lim;_ T’Tm =0.

Define a policy 7© which in period n:
o If n = 7; , for some j, m then it selects A, = j.
@ Otherwise it follows the randomization suggested by the certainty

equivalence solution X,,.

Theorem
70 e ne. J
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A stricter form of the constraint

@ A constraint of this type is not very realistic, since it allows the
average cost to be above Cy for arbitrarily long periods of time.

@ We now impose a stricter form of the cost constraint, which requires
the average sampling cost not to exceed Cp at any intermediate step
and not only in the limit.

o Equivalently, assume that the experimenter has a sampling budget S.

o At the beginning of each period a a fixed amount ( is added to the
budget.

o Also in each period, the experimenter can select any population to
sample from, as long as the sampling cost does not exceed the budget.

o If the budget is S, in period n, then we can sample from any
population i such that ¢; < S, + Cy. In this case the budget left for the
next period is S,41 = S, + Gy — ¢
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Sample-Path Cost Constraint

Consistency under the Stricter Constraint

o Consistent policies can be constructed under the new stricter
constraint framework.

o Generalize the idea of forced sampling along a sparse sequence of
time points
o Self-financing Sampling Block: A sequence of time periods in which

@ Sampling is exclusively performed from a specific group of two or more
populations.

@ The sampling budget is zero at the beginning and at the end of the
block.

© The budget is never violated.

@ Replace sampling periods by sampling blocks.

Comparison of Consistent Policies

If there are many consistent policies, how can we select the “best” among
them? Convergence rate, Loss Function.
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Sample-Path Cost Constraint

A Loss Function

L7(0) = Expected loss from optimal policy performance in n periods, when
adaptive policy 7 is followed and the true parameter value is 6.

When there is no constraint the loss function takes a simple form
L7(8) = np (0) — S5(6) = np™(6) — ZMJ(G Ef Tn(J)
j=1
= Z(u (6,))EG Ta())

Obviously L7 (6) > 0, V,0.
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Sample-Path Cost Constraint

A Loss Function

For the constrained problem
L7(0) = nz(8) — 57 (9)

and L7(0) > 0 for 7 € NF.

The following result relates the loss function with the sampling frequencies
from the nonoptimal populations and it is useful for characterizing efficient
policies. It follows easily from linear programming duality.

Recall that

o ¢j(0) = Gw(8) + v(0) — 1j(6;): Optimality test quantity for
population j. For optimal populations ¢; = 0, for nonoptimal ¢; > 0.
o S7(0)=expected n-period reward for policy 7.

o CJ(0)=expected n-period cost for policy .
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Sample-Path Cost Constraint

Loss Function Decomposition

Proposition

For m € MF,

2@(9 JE§ Talj) + w(nGo — CJ(9)).

The proposition decomposes the optimality and the feasibility effects.

° Jlle ¢;(0)Eg Tn(j) = Loss due to sampling from nonoptimal
populations (optimality effect).

e w(nCy — CJ(8)) = Loss due to sampling from the optimal
populations with incorrect frequencies (feasibility effect).
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Policy Refinement

For a consistent policy, V8 € ©,

lim >0 (0) = z(0)

n—oo N

thus 17 (g
lim n(9) =0, ie, L;(0)=o(n).

n—o0 n

The following is a refinement of the consistency property.
Definition

A policy 7 is uniformly fast (7 € MF) if

L7(8) = o(n*),Ya > 0,0 € ©.

Do uniformly fast policies exist? If they do, is there an “optimal” policy in
this class?
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Sample-Path Cost Constraint

An Asymptotic Lower Bound on the Loss Function

Theorem
There exist Kj(0;),j =1,...,k such that Vvr e NF,0 € ©

E; T.(J
lim inf —2 v) > 1
n—oo  logn K;(6;)

Therefore,

R (C) )
hnnyorlf logn — M(8) = 1:21 K;(0;)

o

If a policy m induces a loss that grows with rate lower than any polynomial
function for all possible parameter configurations, then for the same policy
the loss must grow with at least logarithmic rate.
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An Asymptotically Optimal Policy

Theorem
There exists an adaptive allocation policy 7 such that 8 € ©

)

limsup —/——= < M(9).
n—oo logn

Policy 7* is asymptotically optimal.

Optimal in the class of policies that have a low loss function uniformly in
the parameter 6.
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The Constant M(0)

k
¢;(0)
M(8) =
0=2. %)
where
Kj(0;) = inf{1(0;,0;) : 0; € ©;, 9;(0;) <0},
and 1(6;,0:) is the Kullback-Leibler information (cross-entropy) between
fi(1167) and £i(0;)
' fi(Xil67) Oir
/((9,', 9,-) = E@i (Iog —,) = 9,’/ |og -
fi(Xil6;) z,: O
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Construction of an Asymptotically Optimal Policy

To define an asymptotically optimal policy we use SB of two types :
Initial Sampling and Linear Programming

@ An IS-Block (ISB) is to have estimates for all the populations in a
self-financing way.

@ A LP-Block (LPB) is to imitate the randomization suggested by
certainty equivalence in a self-financing way.

Note that here we do not count time periods but number of blocks.
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Sample-Path Cost Constraint

Definition of 7*

Policy 7* employs sampling blocks of the two types.
The first block (r = 1) is an ISB. Then, the r-th sampling block, that
starts in period n is obtained as follows
@ at the end of (r-1)-th block we have estimates 6" with
11(85), .., pi(85) which g|ves the solution z(8")
o we inflate the estimates ua(ﬁ ) usmg

o (00, 7) = Sup, Apall) < 100,80) <)
o if ua(Ga v) > ua( )+ ¢(8") for some populatlon a,

let za(é ) be the LP solution where s, (6.,) has been replaced by
ua(Ga,v) for populatlon a only
o let z%(0") = maxaza(0")
e employ the LPB which corresponds to the LP solution za(@r) that
gives the maximum value z (9r)
Note that if all populations have uq(8.,,7) < pa(0.) + ¢(8") then we
solve the certainty equivalence LP and employ the corresponding.LPB.
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Sample-Path Cost Constraint

Normal Distributions with Unknown Means and Known
Variances

Assume the observations XCJ,; from bandit « are normally distributed with
unknown means EX’, = 6, and known variances ag, ie, 8,=0,,
ta(f,) = 0n. Given history hy, define

T(S,00-1)

N Zj:l @

1y
Also, we have:
"y (‘9/04 - ea)2
1(0a,0,) = —203
_ (05(9))
Kall) =255 7
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Sample-Path Cost Constraint

Normal Distributions with Unknown Means and Known
Variances

It is easy to see that the indices simplify to:

(2|og57ro(l -1) )1/2

o =
T T (Se(— 1))

« [e7

’ . e . . Al
is the 6, which satisfies the supremum in the index u, (6 ).
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Sample-Path Cost Constraint

Normal Distributions with Unknown Means and Unknown
Variances

Assume the observations XJ, from bandit « are normally distributed with
unknown means EX% = ji, and unknown variances VarXZ, = o2, i.e.,
0., = (tta; 02). Given history h;, define

T(S,00-D) )

Zj:l o

N
Helle) = T (54— 1)

and
I

(X — pa(8,,))?
Tro(Spo (1 = 1))

5~ T5b(S,001-1)

N =1
a(ls) ==
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Sample-Path Cost Constraint

Normal Distributions with Unknown Means and Unknown

Variances

Also, we have:

1(0,,,0.) = (1a(ba) — P;c;);(;rl ;ﬁ —02(0,) +log Uaga)
Kal0) = Lo <1 . <¢50(2g>>2> |

It is easy to see that the UCB indices simplify to:

1/2
) = ua<e)+aa<a)( o(1 — 1) T2 _1)

’

ta(fe

and
02(0,) = (ta(0) — na(8))? + 02 (D),

are the mean and variance of the Qa which satisfy the supremum in the

index ua(Ql).
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Future Work

Bayesian learning for constrained MABs

Inventory models with bayesian learning using MDPs.

Adaptive policies for a two-product inventory model with dynamic
customers.

@ Healthcare models using MDPs: A Model of Managing Chronic Care
with Patient Activation Measure.

Call-Back Option via Dynamic Prioritization in a Call Center.
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