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Main points
✓ Basic concepts of structural Reliability

✓ Signature of reliability coherent structures 

✓ Generating function approach for the signature 
vector

✓ Signature-based stochastic orderings between 
lifetimes of reliability structures

✓ Signature-based closure properties of aging 
classes under the formation of coherent systems

✓ Applications in the field of Reliability Engineering 
and Reliability Economics
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Structural Reliability: notations and 
definitions

✓ Coherent system (CS) consisting of n components
Structure function of a CS

Barlow & Proschan (1975)
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Component’s index

❑ A reliability system is said to be coherent if
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✓ Component lifetimes :
nXXX ,...,, 21

✓ System’s lifetime :  T
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✓ Ordered Component lifetimes : 1: 2: :, ,...,n n n nX X X

✓ Reliability function: R(t) = P (T > t )

✓ Failure (Hazard) rate :
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The signature of a coherent system

✓ Under i.i.d. scheme:
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✓ Definition: niXTPns nii ,...,2,1),()( : === (Samaniego (1985))

• Signature depends only on the system structure and not on the (common) distribution 

• Signature’s i-th coordinate expresses the proportion of permutations Δi, among the 

n! likely permutations of               that result in system’s failure upon the

occurrence of   

nXXX ,...,, 21

: , 1,2,..., .i nX i n=



◼6

An illustrative example

✓Bridge structure
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An illustrative example (cont.)

✓Bridge structure
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✓ Signature vector:
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The system fails at the 2nd ordered component failure if 
one of the following failures occurs: {1,4} or {2,5} 

2! 3! 2! 3! 24 +  =

The system fails at the 3rd ordered component failure if one 
of the following failures occurs: {1,3,5} or {4,3,2} or 
{1,X,2},{2,X,1}, {Χ,1,2},{Χ,2,1},{4,Ψ,5},{5,Ψ,4},{Ψ,4,5}, {Ψ,5,4}, 
where X=3,4,5 and Ψ=1,2,3. 3! 2! 3! 2! 4 3 2! 4 3 2! 72 +  +   +   =

The system fails at the 4th ordered component failure iff the 
last two components which remain at working state are {1,2} 
or {4,5}. 
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Computation of signature: a generating 
function approach 

Triantafyllou & Koutras (2008a)
Probability in the Engineering and Informational Science

Triantafyllou & Koutras (2008b)
Advances in Mathematical Modeling Reliability
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✓ Proposition 1.

where

Proof sketch. 
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2 2
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Computation of signature: a generating 
function approach 
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Computation of signature: a generating 
function approach 

✓ Proposition 2. The double generating function of        can 
be expressed by the aid of the generating function R(z;p) of 
system’s reliability Rn(p) as  
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Computation of signature: a generating 
function approach 
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✓ Final result. 

✓ Having at hand the reliability of a structure or the
corresponding generating function, we are able to compute
its signature by the aid of the above formula.
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Computation of signature: a generating 
function approach 
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✓ The transition probability matrix Λ should be determined 
and written in a suitable blocked form

✓ The generating function of system’s reliability is given by

✓ Recent advances
on the topic:

• Triantafyllou (2020). Mathematics
• Triantafyllou (2021). Int. Journal of Mathematical, 

Engineering and Management Sciences

✓ The reliability structure should be imbedded in a finite
Markov chain

General framework
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Why is signature vector worth 
dealing with? (Part I) 

✓Signature is closely related to some well-known 
reliability concepts

:
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✓ Reliability function:
Kochar, Mukerjee & Samaniego (1999)

(Naval Research Logistics)

✓ Mean Residual Lifetime:
Eryilmaz, Koutras & Triantafyllou (2011)

(Naval Research Logistics)
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Why is signature vector worth 
dealing with? (Part II)

✓Tool for establishing stochastic comparisons
between lifetimes X,Y of two reliability structures

✓ Notations.                  : distribution functions of X,Y

: hazard rates of X,Y  

✓ Definition. X is said to be smaller than Y in the hazard rate 
order         if              for all t. 

)(),( yFxF YX

)(),( trtr YX

( )hrX Y )()( trtr YX 

( ) ( ), for all , 0.P Y b t Y b P X b t X b t b−    −   

( ) / ( )X YF t F t✓ if and only if the ratio                   decreases for all t.   )()( trtr YX 
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Why is signature vector worth 
dealing with? (Part II)

Signature-based stochastic comparisons

Navarro, Rubio & Sandoval (2005)
(Statistics & Probability Letters)

Navarro & Rubio (2011)
(Naval Research Logistics)

1 2If then .hr hrX Y s s

1 11 12 1( , ,..., ),ns s s=s✓ Definition. Denote by                                     the signature 
vectors of two reliability systems with lifetimes X,Y.
If the ratio             increases with respect to i, then         .          
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✓ Proposition 3.

Example. 
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Why is signature vector worth 
dealing with? (Part II)

Signature-based stochastic comparisons between
lifetimes X,Y of two reliability structures (cont.)

Koutras , Triantafyllou & Eryilmaz (2016)
(Methodology and Computing in Applied Probability)

Proposition 4. The system lifetime X is smaller than Y in the 
hazard rate order              if and only if the following condition 
holds true            
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Why is signature vector worth 
dealing with? (Part II)

Koutras , Triantafyllou & Eryilmaz (2016)
(Methodology and Computing in Applied Probability)

✓ Additional signature-based sufficient and necessary
conditions for establishing hazard rate and reverse
hazard rate orderings are proved.

✓Signature-based stochastic orderings between well-known
consecutive-type reliability structures are established.

Proposition 5. Let X,Y be the lifetimes of a circular consecutive- k-
out-of-n: F and a circular (n,m,k) system consisting both of the same 
n components. It holds true that           if 

1,:: − mjiforXX njhrni ( ) / ( 1) increaseswith respect to 1,2,..., 1i is n s n i m− = −

( )hrX Y

[ / ]m n k
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Why is signature vector worth 
dealing with? (Part III)

✓Tool for investigating the preservation of aging 
properties under the formation of a CS
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Proposition 6. Assume that reliability system consists of n
IFR i.i.d. components. Then the system’s lifetime is IFR iff

increases for x>0. 

Drawback: The complicated form of h(x) makes the study of 
its monotonicity a difficult task.  
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Why is signature vector worth 
dealing with? (Part III)

✓Tool for investigating the preservation of aging 
properties under the formation of a CS

Triantafyllou & Koutras (2008)
(Probability in the Engineering and Information Science)
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Proposition 7. Let be the minimum number of working
Components in a reliability structure such that the system can still
operate successfully. If
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Why is signature vector worth 
dealing with? (Part III)

Triantafyllou & Koutras (2008)
(Probability in the Engineering and Information Science)
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0 0 01 1 1 0 1

0 0

( )( ( ) ( ) ( ))
1

m m m m i i i

n n
s n s n n i s n

i i
   − − + +

  
− = − −  

−  

0 02 3( ) ( ) ... ( ) 0n n n n ns n s n s n− + − += = = =

011 − −− mmmm 



◼21

Why is signature vector worth 
dealing with? (Part III)

Triantafyllou & Koutras (2008)
(Probability in the Engineering and Information Science)

Example. Let us consider the consecutive-2-out-of-n:F system.
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Applications in Reliability Economics

✓ Three imposing challenges arise in seeking to address a 
problem in Reliability Economics analytically.

❑Quantify the performance of the system
❑Quantify the cost of the system
❑ Determine a criterion for comparing the systems of interest

✓A decision is made or an action is taken with a view 
toward balancing the performance of a system and its cost. 

✓ We aim at justifying a particular formulation of the problem
of finding the optimal system design relative to a specific
family of criterion functions that take performance and
cost into account.
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Applications in Reliability Economics

✓Main target: Identify a system that strikes an appropriate balance 
between one’s positive expectations regarding its reliability, its cost and 
possible constraints.

✓Example. Search for an “optimal” coherent system of order n.

❑ Focus on the problem of optimal system design

➢ For small n, the entire collection of such systems is easy to enumerate.

➢ The number of distinct coherent systems of order n grows exponentially
with n.

➢ The problem of finding the best coherent system of a given order is, 
typically, a discrete optimization problem in which the space to be 
searched is huge.

➢ A second obstacle to the analytical treatment of this problem is the 
fact that there has been no obvious, manageable index with respect to 
which one might optimize.
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Applications in Reliability Economics

✓A signature-based measure for optimizing both performance and cost 
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Note that vectors a,c can be chosen arbitrarily within the context of two 
natural monotonicity constraints: 1 20 ... ,na a a   
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❑ Performance measures: R(t) or E(T)

:

1

( ) ( ) ( )
n

i i n

i

R t s n P X t
=

=  :

1

( ) ( ) ( )
n

i i n

i

E T s n E X
=

=

❑ Cost measure: E(C) (e.g. salvage model)

❑ Criterion function:
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Future potential

Relax i.i.d assumption

Applying the Markov chain imbedding approach, to
develop recurrence relations for additional consecutive-
type reliability structures.

Investigate the aging preservation property under the
formation of CS’s for different aging classes.
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