On the signature of coherent reliability systems: advances and applications

Ioannis S. Triantafyllou

Assistant Professor

Department of Computer Science and Biomedical Informatics

University of Thessaly

October 2020 Athens

Main points

- Basic concepts of structural Reliability
- Signature of reliability coherent structures
- Generating function approach for the signature vector
- ✓ Signature-based stochastic orderings between lifetimes of reliability structures
- ✓ Signature-based closure properties of aging classes under the formation of coherent systems
- Applications in the field of Reliability Engineering and Reliability Economics

Structural Reliability: notations and definitions

Coherent system (CS) consisting of n components

Component's index

- $x_i = \begin{cases} 1, & \text{if } i \text{component is working} \\ 0, & \text{if } i \text{component fails.} \end{cases}$
- A reliability system is said to be coherent if
 - If $x_i \le y_i, i = 1, 2, ..., n$, then $\phi(x_1, x_2, ..., x_n) \le \phi(y_1, y_2, ..., y_n)$
 - Each component is relevant
- A vector $(x_1, x_2, ..., x_n)$ is said to be path vector if $\phi(x_1, x_2, ..., x_n) = 1$ and the corresponding set $\{i: x_i = 1\} \subseteq \{1, 2, ..., n\}$ is called path set. (minimal path vector if additionally $\phi(\mathbf{y}) = 0$, for $\mathbf{y} < \mathbf{x}$)
- $R = P(\phi(x_1, x_2, ..., x_n) = 1)$ Reliability polynomial of a CS: $=1 \cdot P(\phi(x_1, x_2, ..., x_n) = 1) + 0 \cdot P(\phi(x_1, x_2, ..., x_n) = 0)$ $= E(\phi(x_1, x_2, ..., x_n))$

Barlow & Proschan (1975)

Structure function of a CS $(\phi: \{0,1\}^n \rightarrow \{0,1\})$

 $\phi = \phi(x_1, x_2, ..., x_n) = \begin{cases} 1, & \text{if the system is working} \\ 0, & \text{if the system fails.} \end{cases}$

$$\phi(x) = 1 - \prod_{j=1}^{M} (1 - \prod_{i \in P_j} x_i)$$

- Time to Failure ... \checkmark Component lifetimes : $X_1, X_2, ..., X_n$
- ✓ System's lifetime : T
- ✓ Ordered Component lifetimes : $X_{1:n}, X_{2:n}, ..., X_{n:n}$
- \checkmark Reliability function: R(t) = P(T > t)
- ✓ Failure (Hazard) rate: $-\frac{R'(t)}{R(t)} = \lim_{\Delta t \to 0} \frac{P(X_i \le t + \Delta t \mid X_i > t)}{\Delta t}$

✓ Mean Residual Lifetime: $E(T-t|T>t) = \frac{1}{P(T>t)} \int_{t}^{\infty} P(T>x) dx$

The signature of a coherent system

✓ **Definition:** $s_i(n) = P(T = X_{i:n}), \quad i = 1, 2, ..., n$ (Samaniego (1985))

✓ Under i.i.d. scheme:

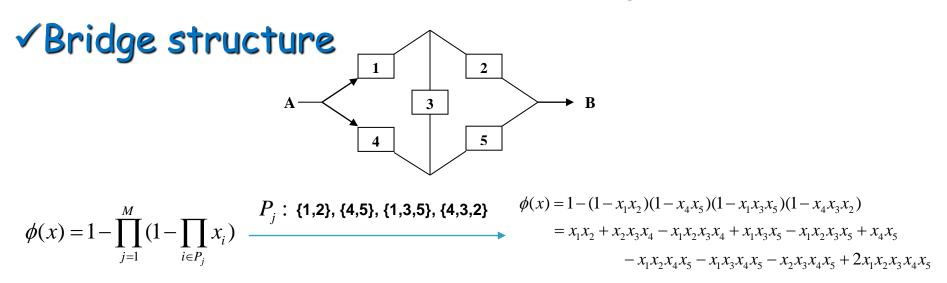
- Signature depends only on the system structure and not on the (common) distribution
- Signature's *i*-th coordinate expresses the proportion of permutations Δ_i , among the *n*! likely permutations of $X_1, X_2, ..., X_n$ that result in system's failure upon the occurrence of $X_{i:n}$, i = 1, 2, ..., n.

•
$$s_i(n) = \frac{\Delta_i}{n!}$$

•
$$s_i(n) = a_{n-i+1}(n) - a_{n-i}(n), \quad i = 1, 2, ..., n$$

 $\left(a_i(n) = r_i(n) / \binom{n}{i}, \text{ where } r_i(n) \text{ denotes the # of path sets of size } i \right)$

An illustrative example



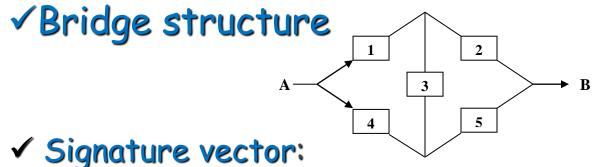
 $R = E(\phi(\mathbf{X})) = p_1 p_2 + p_2 p_3 p_4 - p_1 p_2 p_3 p_4 + p_1 p_3 p_5 - p_1 p_2 p_3 p_5 + p_4 p_5 - p_1 p_2 p_4 p_5$

 $-p_1p_3p_4p_5-p_2p_3p_4p_5+2p_1p_2p_3p_4p_5$

✓ Under i.i.d. scheme: $p_i = p$, i = 1, 2, ..., 5

$$R(p) = R_{BS} = 2p^2 + 2p^3 - 5p^4 + 2p^5$$

An illustrative example (cont.)



The system fails at the 2nd ordered component failure if one of the following failures occurs: {1,4} or {2,5}

The system fails at the 3rd ordered component failure if one of the following failures occurs: {1,3,5} or {4,3,2} or {1,X,2},{2,X,1}, {X,1,2},{X,2,1},{4,Ψ,5},{5,Ψ,4},{Ψ,4,5}, {Ψ,5,4}, where X=3,4,5 and Ψ =1,2,3.

The system fails at the 4th ordered component failure iff the last two components which remain at working state are $\{1,2\}$ or {4,5}.

$$s_{BS}^{t} = (0, \frac{1}{5}, \frac{3}{5}, \frac{1}{5}, 0)$$

 $2! \cdot 3! + 2! \cdot 3! = 24$ $\rightarrow s_2 = P(T = X_{(2)}) = \frac{24}{5!} = \frac{1}{5!}$

 $\rightarrow s_3 = P(T = X_{(3)}) = \frac{72}{120} = \frac{3}{5}$

 $3! \cdot 2! + 3! \cdot 2! + 4 \cdot 3 \cdot 2! + 4 \cdot 3 \cdot 2! = 72$

 $\Rightarrow s_4 = P(T = X_{(4)}) = \frac{4!}{5!} = \frac{1}{5}$

✓ Proposition 1.

Triantafyllou & Koutras (2008a) Probability in the Engineering and Informational Science Triantafyllou & Koutras (2008b) Advances in Mathematical Modeling Reliability

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} i \binom{n}{i} s_i(n) t^i x^n = tx \frac{\partial H(x,t)}{\partial x} - t(t+1) \frac{\partial H(x,t)}{\partial t}$$

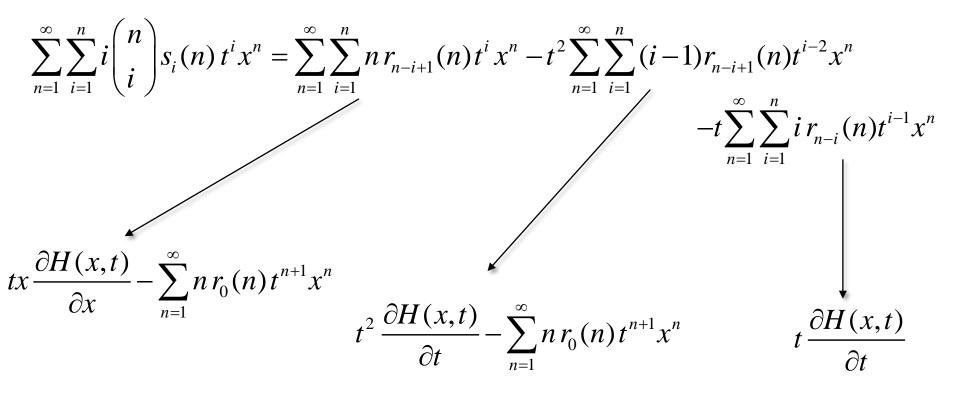
where
$$H(x,t) = \sum_{n=1}^{\infty} \sum_{i=1}^{n} r_{n-i}(n) t^{i} x^{n}$$
.

Proof sketch.

$$a_{i}(n) = {\binom{n}{i}}^{-1} r_{i}(n)$$

$$s_{i}(n) = a_{n-i+1}(n) - a_{n-i}(n)$$

$$i {\binom{n}{i}} s_{i}(n) = (n-i+1)r_{n-i+1}(n) - ir_{n-i}(n).$$



✓ Proposition 2. The double generating function of $r_i(n)$ can be expressed by the aid of the generating function R(z;p) of system's reliability $R_n(p)$ as

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} r_i(n) t^i x^n = R(x(1+t); \frac{t}{1+t})$$

Proof sketch.
$$R_n(p) = \sum_{i=1}^n a_i(n) \binom{n}{i} p^i q^{n-i} = \sum_{i=1}^n r_i(n) p^i q^{n-i}$$

 $p = \frac{t}{1+t}$ $z = x(1+t)$
 $R(z; p) = \sum_{n=1}^{\infty} R_n(p) z^n = \sum_{n=1}^{\infty} \sum_{i=1}^n r_i(n) (\frac{p}{q})^i (qz)^n$

✓ Final result.

$$\sum_{n=1}^{\infty}\sum_{i=1}^{n}i\binom{n}{i}s_{i}(n)t^{i}x^{n} = tx\frac{\partial R(x(1+t);\frac{1}{1+t})}{\partial x} - t(t+1)\frac{\partial R(x(1+t);\frac{1}{1+t})}{\partial t}$$

✓ Having at hand the reliability of a structure or the corresponding generating function, we are able to compute its signature by the aid of the above formula.

Computation of signature: a generating function approach General framework

✓ The reliability structure should be imbedded in a finite Markov chain

 \checkmark The transition probability matrix Λ should be determined and written in a suitable blocked form

 \checkmark The generating function of system's reliability is given by

$$R(z;p) = \boldsymbol{\pi}_0' (I - z\Lambda)^{-1} \mathbf{u} = \frac{1}{1-z} - \frac{1}{\det(I - z\Lambda)} e_{1,N}$$

Recent advances on the topic:

- Triantafyllou (2020). Mathematics
- Triantafyllou (2021). Int. Journal of Mathematical, Engineering and Management Sciences

Why is signature vector worth dealing with? (Part I)

Signature is closely related to some well-known reliability concepts

n

✓ Reliability function:

Kochar, Mukerjee & Samaniego (1999) (Naval Research Logistics)

$$P(T > t) = \sum_{i=1}^{n} s_i(n) P(X_{i:n} > t)$$

$$P(T > t) = \sum_{i=1}^{n} s_i(n) \sum_{j=0}^{i-1} {n \choose j} (F(t))^j (\overline{F}(t))^{n-j}$$

where F denotes the distribution of X_i 's

✓ Mean Residual Lifetime:

Eryilmaz, Koutras & Triantafyllou (2011) (Naval Research Logistics)

$$MRL(t) = \frac{\sum_{i=1}^{n} s_i(n) P(X_{i:n} > t) MRL_{SS}(i, t)}{\sum_{i=1}^{n} s_i(n) P(X_{i:n} > t)},$$

where $MRL_{SS}(i, t)$ denotes the MRL function of a series system of size i

Why is signature vector worth dealing with? (Part II)

✓Tool for establishing stochastic comparisons between lifetimes X,Y of two reliability structures

✓ Notations. $F_X(x), F_Y(y)$: distribution functions of X,Y

 $r_X(t), r_Y(t)$: hazard rates of X,Y

✓ Definition. X is said to be smaller than Y in the hazard rate order $(X ≤_{hr} Y)$ if $r_X(t) ≥ r_Y(t)$ for all t.

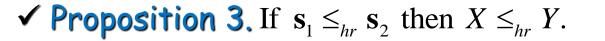
✓ $r_X(t) \ge r_Y(t)$ if and only if the ratio $\overline{F}_X(t) / \overline{F}_Y(t)$ decreases for all t.

 $P(Y-b>t \mid Y>b) \ge P(X-b>t \mid X>b)$, for all $t, b \ge 0$.

Why is signature vector worth dealing with? (Part II)

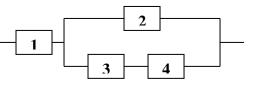
Signature-based stochastic comparisons

✓ Definition. Denote by $s_1 = (s_{11}, s_{12}, ..., s_{1n})$, $s_2 = (s_{21}, s_{22}, ..., s_{2n})$ the signature vectors of two reliability systems with lifetimes X,Y. If the ratio $\sum_{j=i}^{n} s_{2j} / \sum_{j=i}^{n} s_{1j}$ increases with respect to *i*, then $s_1 \leq_{hr} s_2$.



Navarro, Rubio & Sandoval (2005) (Statistics & Probability Letters)

> Navarro & Rubio (2011) (Naval Research Logistics)



 $\mathbf{s}_1 = \left(\frac{1}{4}, \frac{7}{12}, \frac{1}{6}, 0\right),$

Example.

$$\mathbf{s}_2 = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0\right)$$

2

3

4

Why is signature vector worth dealing with? (Part II)

Signature-based stochastic comparisons between lifetimes X,Y of two reliability structures (cont.)

Proposition 4. The system lifetime X is smaller than Y in the hazard rate order $(X \leq_{hr} Y)$ if and only if the following condition holds true $(\overline{F}_r(t) = P(T_r > t), r = X, Y)$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \left(s_i^{(1)}(n) s_j^{(2)}(n) - s_i^{(2)}(n) s_j^{(1)}(n) \right) \overline{F}'_{i:n}(t) \overline{F}_{j:n}(t) \le 0, \ t \ge 0$$

Proof sketch. $X \leq_{hr} Y$ **iff** $A(t) = \overline{F}'_X(t)\overline{F}_Y(t) - \overline{F}_X(t)\overline{F}'_Y(t) \leq 0$

$$\overline{F}_{X}(t) = \sum_{i=1}^{n} s_{i}^{(1)}(n) \overline{F}_{i:n}(t)$$

$$\overline{F}_{X}'(t) = \sum_{i=1}^{n} s_{i}^{(1)}(n) \overline{F}_{i:n}'(t)$$

$$A(t) = \left(\sum_{i=1}^{n} s_{i}^{(1)}(n) \overline{F}_{i:n}'(t)\right) \left(\sum_{j=1}^{n} s_{j}^{(2)}(n) \overline{F}_{j:n}(t)\right) - \left(\sum_{j=1}^{n} s_{j}^{(1)}(n) \overline{F}_{j:n}(t)\right) \left(\sum_{i=1}^{n} s_{i}^{(2)}(n) \overline{F}_{i:n}'(t)\right)$$

Koutras , Triantafyllou & Eryilmaz (2016) (Methodology and Computing in Applied Probability)

Why is signature vector worth dealing with? (Part II)

Koutras , Triantafyllou & Eryilmaz (2016) (Methodology and Computing in Applied Probability)

✓ Additional signature-based sufficient and necessary conditions for establishing hazard rate and reverse hazard rate orderings are proved.

✓ Signature-based stochastic orderings between well-known consecutive-type reliability structures are established. Proposition 5. Let X,Y be the lifetimes of a circular consecutive- k-out-of-n: F and a circular (n,m,k) system consisting both of the same n components. It holds true that $(X ≥_{hr} Y)$ if

 $X_{i:n} \ge_{hr} X_{j:n}$, for $i < j \le m-1$ $S_i(n) / S_i(n-1)$ increases with respect to i = 1, 2, ..., m-1

 $m \ge [n / k]$

Why is signature vector worth dealing with? (Part III) 🎋

- Tool for investigating the preservation of aging properties under the formation of a CS
- Proposition 6. Assume that reliability system consists of *n* IFR i.i.d. components. Then the system's lifetime is IFR iff

$$h(x) = \frac{\sum_{i=0}^{n-1} (n-i) \cdot s_{i+1}(n) \cdot \binom{n}{i} \cdot x^{i}}{\sum_{i=0}^{n-1} \left(\sum_{j=i+1}^{n} s_{j}(n)\right) \cdot \binom{n}{i} \cdot x^{i}}$$

increases for x>0.

Drawback: The complicated form of h(x) makes the study of its monotonicity a difficult task.

Why is signature vector worth dealing with? (Part III)

Tool for investigating the preservation of aging properties under the formation of a CS

Proposition 7. Let $n_0 (1 \le n_0 < n)$ be the minimum number of working Components in a reliability structure such that the system can still operate successfully. If Triantafyllou & Koutras (2008)

$$s_{i_0}(n) > (n - i_0) s_{i_0 + 1}(n)$$

Triantafyllou & Koutras (2008) (Probability in the Engineering and Information Science)

for $i_0 = n - n_0$, then the system does not preserve the IFR property.

Proof sketch
$$a_i$$

$$h(x) = \frac{\sum_{i=0}^{n-1} (n-i) \cdot s_{i+1} \cdot \binom{n}{i} \cdot x^i}{\sum_{i=1}^{n-1} \sum_{i=1}^n s_i \cdot \binom{n}{i} x^i} = \frac{\sum_{i=0}^m \alpha_i x^i}{\sum_{i=0}^m \beta_i x^i}, x > 0$$

$$f(x) = h(1/x)$$

$$\lim_{x \to 0} f'(x) = \left(\alpha_{m-1}\beta_m - \alpha_m\beta_{m-1}\right)\beta_m^{-2}$$
Determine its sign

Why is signature vector worth dealing with? (Part III)

Proof sketch of Proposition 7 (cont.)

Triantafyllou & Koutras (2008) (Probability in the Engineering and Information Science)

$$\alpha_{m-1}\beta_{m} - \alpha_{m}\beta_{m-1} = (n-m+1)s_{m}(n)\binom{n}{m-1}\binom{n}{m}\sum_{j=m+1}^{n}s_{j}(n) - (n-m)s_{m+1}(n)\binom{n}{m}\binom{n}{m-1}\sum_{j=m}^{n}s_{j}(n)$$

$$s_{n-n_{0}+2}(n) = s_{n-n_{0}+3}(n) = \dots = s_{n}(n) = 0$$

$$\alpha_{m-1}\beta_{m} - \alpha_{m}\beta_{m-1} = \binom{n}{i_{0}}\binom{n}{i_{0}-1}s_{i_{0}+1}(n)\underbrace{s_{i_{0}}(n) - (n-i_{0})s_{i_{0}+1}(n)}_{\alpha_{m-1}\beta_{m} - \alpha_{m}\beta_{m-1}} > 0$$

Why is signature vector worth dealing with? (Part III)

Triantafyllou & Koutras (2008) (Probability in the Engineering and Information Science)

Example. Let us consider the consecutive-2-out-of-n:F system.

For even *n*, we have $n_0 = \frac{n}{2}$, $i_0 = n - n_0 = \frac{n}{2}$ For odd *n*, we have $n_0 = \frac{n-1}{2}$, $i_0 = n - n_0 = \frac{n+1}{2}$ $\frac{s_{i_0}(n)}{s_{i_0+1}(n)} = \frac{s_{n_0}(n)}{s_{i_0+1}(n)} = \frac{n_0(n_0+1)\left(\frac{(n_0+1)(n_0+2)}{3!}-1\right)}{n_0(n_0+1)-1}$ $> \frac{(n_0+1)(n_0+2)}{6} - 1 = \frac{(n_0-1)(n_0+4)}{6}.$ $s_{i_0}(n) = \frac{s_{n_0+1}(n)}{s_{n_0+2}(n)} = \frac{n_0(n_0+1)\left(\frac{(n_0+1)(n_0+2)}{2}-1\right)}{n_0(n_0+1)-1}$ $> \frac{(n_0+1)(n_0+2)}{2} - 1 = \frac{n_0(n_0+3)}{2} > n_0$ $n_0 \ge 1$ $s_{i_0}(n) > n_0 s_{i_0+1}(n)$

Applications in Reliability Economics

✓A decision is made or an action is taken with a view toward balancing the performance of a system and its cost.

- Three imposing challenges arise in seeking to address a problem in Reliability Economics analytically.
- Quantify the performance of the system
- **Quantify the cost of the system**
- Determine a criterion for comparing the systems of interest
- ✓ We aim at justifying a particular formulation of the problem of finding the optimal system design relative to a specific family of criterion functions that take performance and cost into account.

Applications in Reliability Economics

□ Focus on the problem of optimal system design

Main target: Identify a system that strikes an appropriate balance between one's positive expectations regarding its reliability, its cost and possible constraints.

Example. Search for an "optimal" coherent system of order n.

> For small n, the entire collection of such systems is easy to enumerate.

> The number of distinct coherent systems of order n grows exponentially with n.

- The problem of finding the best coherent system of a given order is, typically, a discrete optimization problem in which the space to be searched is huge.
- A second obstacle to the analytical treatment of this problem is the fact that there has been no obvious, manageable index with respect to which one might optimize.

Applications in Reliability Economics

A signature-based measure for optimizing both performance and cost

Performance measures: R(t) or E(T) $R(t) = \sum_{i=1}^{n} s_i(n) P(X_{i:n} > t) \qquad E(T) = \sum_{i=1}^{n} s_i(n) E(X_{i:n})$ Cost measure: E(C) $E(C) = \sum_{i=1}^{n} c_i s_i \quad (e.g. \text{ salvage model})$ Criterion function: $m_r(\mathbf{s}, \mathbf{a}, \mathbf{c}) = \frac{\sum_{i=1}^{n} a_i s_i}{\left(\sum_{i=1}^{n} c_i s_i\right)^r}, r > 0$

Note that vectors **a**,**c** can be chosen arbitrarily within the context of two natural monotonicity constraints: $0 < a_1 < a_2 < ... < a_n$, $0 < c_1 < c_2 < ... < c_n$

Future potential

- Relax i.i.d assumption
- Set Applying the Markov chain imbedding approach, to develop recurrence relations for additional consecutivetype reliability structures.
- © Investigate the aging preservation property under the formation of CS's for different aging classes.

References

Barlow, R.E. & Proschan, F. (1975). Statistical Theory of Reliability and Life Testing: Probability Models, Holt, Rinehart and Winston, Inc.

Dugas, M. & Samaniego, F. J. (2007). On optimal system design in Reliability Economics Frameworks, *Naval Research Logistics*, **54**, 568-582.

Eryilmaz, S., Koutras, M. V. & Triantafyllou, I. S. (2011). Signature based analysis of m-consecutive k-out-of-n: F systems with exchangeable components, *Naval Research Logistics*, 58, 344-354.

Kochar, S., Mukerjee, H. & Samaniego, F. J. (1999). The signature of a coherent system and its application to comparison among systems, *Naval Research Logistics*, **46**, 507-523.

Koutras, M. V. (1996). On a Markov chain approach for the study of reliability structures, Journal of Applied Probability, 33, 357-367.

Koutras, M. V., Triantafyllou, I. S. & Eryilmaz, S. (2016). Stochastic comparisons between lifetimes of reliability systems with exchangeable components, *Methodology and Computing in Applied Probability*, **18**, 1081-1095.

Navarro. J. & Rubio, R. (2011). A note on necessary and sufficient conditions for ordering properties of coherent systems with exchangeable components, *Naval Research Logistics*, **58**, 478–489.

Navarro. J., Rubio, R. & Sandoval, C.J. (2005). A note on comparisons among coherent systems with dependent components using signatures, *Statistics and Probability Letters*, 72, 179–185.

Samaniego, F. J. (2007). System Signatures and their Applications in Engineering Reliability, 110, Springer, New York.

Samaniego, F. J. (1985). On closure of the IFR class under formation of coherent systems, *IEEE Transactions on Reliability*, **34**, 69-72.

Shaked M. & Shanthikumar, J. G. (2007). Stochastic orders, Springer-Verlag, New York.

Triantafyllou, I.S. & Koutras, M.V. (2011). Signature and *IFR* preservation of 2-within-consecutive-k-out-of-n: F systems and applications, *IEEE Transactions on Reliability*, **60**, 315-322.

Triantafyllou, I. S. (2015). Consecutive-type reliability systems: an overview and some applications, *Journal of Quality and Reliability Engineering*, **2015**, Article ID 212303, 20 pages.

Triantafyllou, I.S. & Koutras, M.V. (2008a). On the signature of coherent systems and applications, *Probability in the Engineering* and Informational Science, **22**, 19-35.

Triantafyllou, I. S. (2021). Reliability study of <n,f,2> systems: a generating function approach, International Journal of Mathematical, Engineering and Management Sciences, 6, 44-65.

Triantafyllou, h. S. & Koutras, M.V. (2008b). On the signature of coherent systems and applications for consecutive k-out-of-n: *F* systems. In *Advances J. Mothematical Modeling Reliability* (Eds. T. Bedford et al.), IOS Press, 119-128.

Triantafyllou, I. S. (2020). On the subscriptive k1- and k2-out-of-n reliability systems, Mathematics, 8, 630.