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Context: Bayesian multilevel models

• Complex models built via combination of
local and simpler distributions

• Extremely powerful and successful paradigm:
flexibility, interpretability, borrowing of
information,. . . 1

• Naturally lend themselves to Gibbs Sampling
schemes where you update a subset of
variables conditional on the others

Figure: Hierarchical structure
induced by a multilevel model

1Gelman&Hill (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge.U.Press
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Complexity&optimization of MCMC for multilevel models

Aim: improve theoretical understanding and methodological guidance for MCMC
on multilevel models.

This talk:

• consider the Gibbs Sampler and multilevel Gaussian models

• explore the interaction between model structure and algorithms’ behavior

• Provide quantitative theory with methodological implications, e.g.

1. complexity statements
2. guidance on optimal implementations

NB: large literature on MCMC theory deals with generic target distributions, here
we consider structured data.
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Overview of the talk

1. Introduction

2. Nested linear models
• Introduce multigrid decomposition
• Hierarchical ordering
• Reparametrizations

3. Crossed effect models
• Multigrid analysis
• Recovering scalability
• Effect of sparsity

4. Conclusions and future work

Figure: Nested effects models

Figure: Crossed effects models
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Nested linear models

3-level nested model:

Likelihood: yijk |µ, a, b ∼ N(µ+ ai + bij , τ
−1
e ) i∈[I ], j∈[J],k∈[K ]

Prior: bij
iid∼ N(0, τ−1

b ), ai
iid∼ N(0, τ−1

a ), p(µ) ∝ 1.

Standard Gibbs Sampler for (µ, a, b)|y
1. Sample µ ∼ p(µ|a, b, y)
2. Sample ai ∼ p(ai |µ, b, y) for all i
3. Sample bij ∼ p(bij |µ, a, y) for all i , j

Question: what is the computational complexity of GS?

NB: we are considering the fixed-variance scenario. Typically variance parameters
are given a prior distribution and GS is embedded in a scheme updating also those.
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Complexity of MCMC

For iterative sampling algorithms like MCMC

Costalg = Costiter · Tmix

Costiter typically easy to compute. For Gibbs often Costiter = O(N)

Technically challenging part: quantify Tmix .

We seek algorithms with good scalability, e.g. Costalg ≤ O(N)
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Approach and main technical tool

There are different notions of Tmix . In this talk, we will consider the following.
Definition: The rate of convergence of a Markov chain X1,X2 . . . is the smallest
number ρ such that

‖L(Xt |X0 = x)− π‖ ≤ C (x)ρt

The rate of convergence can be interpreted in terms of convergence time as

Tmix =
1

1− ρ

Intuition: Tmix ≈ number of iterations needed to get each iid sample.
Example: ρ = 0.999 ⇒ Tmix ≈ 1000

Giacomo Zanella (Bocconi University) Complexity and optimization of the Gibbs Sampler for multilevel linear models 3/05/2018 6 / 34



Introduction Multigrid decomposition - Nested Crossed Random Effects Simulations Conclusion and future work

Gaussian Gibbs Samplers

Many proofs of ρ < 1 (i.e. geometric ergodicity) under mild assumptions.
However, computing ρ exactly (or even bounding it) is very difficult in practice!
An important exception is given by Gaussian autoregressions.

A Gibbs Sampler targeting N(0,Σ) becomes a simple AR(1) process

Xt = BXt−1 + noise

where B is an explicit function of Σ. In this context, the Gibbs Sampler rate of
convergence coincide with the largest eigenvalue of B, ρ(B). 2 3 Issue in practice
is the high-dimensionality of B, which equals the number of parameters p.

2Amit (1996) Convergence properties of the Gibbs Sampler for perturbations of Gaussians.Ann.Statist.
3Roberts&Sahu(1997)Updating schemes, correlation structure, blocking and parameterization for the

Gibbs sampler. JRSS-B
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Back to nested models

Model: yijk |µ, a, b ∼ N(µ+ ai + bij , τ
−1
e )

MCMC: the Markov chain ((µ, a, b)(t))∞t=0 induced by the Gibbs Sampler is a
Gaussian auto-regression However, it is high-dimensional (1+I+IJ).

Basic idea: find a decomposition of (µ, a, b)(t) into easier and lower-dimensional
chains that allows direct analysis

Giacomo Zanella (Bocconi University) Complexity and optimization of the Gibbs Sampler for multilevel linear models 3/05/2018 8 / 34



Introduction Multigrid decomposition - Nested Crossed Random Effects Simulations Conclusion and future work

Multigrid decomposition

Map (µ, a, b) 7→ (δ(0), δ(1), δ(2)) by

1. decomposing (µ, a, b) into residuals at different levels of granularity:

bij = b̄ + (b̄i − b̄) + (bij − b̄i ) = δ(0)b + δ(1)bi + δ(2)bij

ai = ā + (ai − ā) = δ(0)a + δ(1)ai

µ = µ = δ(0)µ

where ā = 1
I

∑
i ai , b̄ = 1

IJ

∑
ij bij and b̄i = 1

J

∑
j bij .

2. re-arrange terms and consider

δ(0) = (δ(0)µ, δ(0)a, δ(0)b) ∈ R3

δ(1) = (δ(1)ai , δ
(1)bi )i ∈ R2I

δ(2) = (δ(2)bij)ij ∈ RIJ
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Theorem (Multigrid decomposition of GS)
Let ((µ, a, b)(t))∞t=0 be the Markov chain generated by the Gibbs Sampler. Then
δ(0)(t), δ(1)(t) and δ(2)(t) are three independent Markov chains.

Corollary: The mixing time of GS is Tgibbs = max{T (δ(0)),T (δ(1)),T (δ(2))}
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Target decomposition 6= MCMC decomposition

Toy example
(x , y) bivariate gaussian with correlation ρ. Then:

• x and z = y − ρx are independent r.v.s under the target, but

• the stochastic processes x(t) and z(t) induced by the Gibbs Sampler are not
independent Markov chains.
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Figure: Cross correlation between x(t) and z(t)

For crossed (and nested) random effect models the multigrid decomposition for
MCMC has to do with model structure.
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Multigrid decomposition - Nested model case

Theorem (Hierarchical ordering of mixing times)

T (δ(0)) ≥ T (δ(1)) ≥ T (δ(2))

⇒ convergence behavior of GS is monotonic with granularity (coarsest=slowest)

Corollary

Tgibbs =T (δ(0)) = 1 + JK
τe

min{τa, Jτb}

Therefore
Costgibbs = O(JK · N)

⇒ mixing deteriorates as model/data size increase and total cost is super-linear!
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Reparametrizations

Original model: yijk ∼ N(µ+ ai + bij , τ
−1
e )

Sampler GS(µ, a, b):

1. Sample µ ∼ p(µ|a, b)
2. Sample ai ∼ p(ai |µ, b) for all i
3. Sample bij ∼ p(bij |µ, a) for all i , j

Centered parametrization:4 5define γi = µ+ ai
and ηij = γi + bij . Re-write the model as:
yijk ∼ N(ηij , τ

−1
e ), ηij ∼ N(γi , τ

−1
b ), γi ∼ N(µ, τ−1

a )

Sampler GS(µ, γ, η):
1. Sample µ ∼ p(µ|γ, η)
2. Sample γi ∼ p(γi |µ, η) for all i
3. Sample ηij ∼ p(ηij |µ, γ) for all i , j

4 Gelfand,Sahu&Carlin (1995) Efficient parametrisations for normal linear mixed models. Biometrika
5 Papaspiliopoulos et al.(2007)A general framework for the parametrization of hier.models. Stat.Science
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For 3-level nested models we have
four natural parametrizations lea-
ding to four Gibbs Samplers:

• GS(µ, a, b)

• GS(µ, γ, η)

• GS(µ, a, η)

• GS(µ, γ, b)
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Change of parametrizations often have major effects on MCMC convergence!
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Multigrid decomposition allows to derive
mixing times for all parametrizations

Theorem (Explicit rates for
different parametrizations)

T(µ,γ,η) =

(
1 +

τa
Jτb

)(
1 +

τb
Kτe

)
T(µ,a,b) =1 + JK

τe
min{τa, Jτb}

T(µ,γ,b) =

(
1 +

τa
JKτe

)(
1 +

Kτe
τb

)
T(µ,a,η) =1 + J

τb
min{τa, JKτe}
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Corollary
To obtain the parametrization with the smallest mixing time

replace a with γ iff Var(ā) ≥ Var(b̄) + Var(ȳ)

(
i .e.

1

τa
≥ 1

Jτb
+

1

JKτe

)
replace b with η iff Var(b̄) ≥ Var(ȳ)

(
i .e.

1

τb
≥ 1

Kτe

)

Under the optimal parametrization Tgibbs ≤ 3 ⇒ Costgibbs = O(N)

In the unknown variances case, the parametrization can be optimized “on the fly”
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More details in preprint 6 :

• Generalization to arbitrary tree structure

• Hierarchical ordering of rates for k levels (Cauchy interlacing theorem)

• Bounds for general non-symmetric scenarios

• Analysis of partially non-centered and bespoke parametrizations

• . . .

6 G.Zanella&G.Roberts (2017) Analysis of the Gibbs Sampler for Gaussian hierarchical models via

multigrid decomposition. Preprint.
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Beyond nested structures: crossed effects

2-factors crossed effects model
Likelihood: yij ∼ N(µ+ ai + bj , τ

−1
e ) i ∈ [I ], j ∈ [J]

Prior: bj
iid∼ N(0, τ−1

b ), ai
iid∼ N(0, τ−1

a ), p(µ) ∝ 1.

e.g. in recommender systems i denotes items and j users

• Crossed structure has major computational implications: no tree-based
algorithms, cost of marginal likelihood and exact sampling is O(N3/2), . . .

• Cost driven by inversions of large Gaussian precision matrix. Sparse linear
algebra techniques could be used, but the precision matrix has no specific
structure (e.g. banded) and could even be dense.

• Motivated by recent work on method of moments to get O(N) algorithms 7

• How does MCMC perform here?

7 K.Gao&A.Owen (2017) Estimation and Inference for Very Large Linear Mixed Effects Models. EJS.
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Crossed Effect - Multigrid analysis

Model: yij ∼ N(µ+ ai + bj , τ
−1
e )

Standard Gibbs Sampler:
1. Sample µ ∼ p(µ|a, b)
2. Sample ai ∼ p(ai |µ, b) for all i
3. Sample bj ∼ p(bj |µ, a) for all j

Notation: ā = 1
I

∑
i ai , b̄ = 1

J

∑
j bj , δai = ai − ā, δbj = bj − b̄

Theorem (Multigrid decomposition)
Let (µ, a, b)(t) be the Markov chain generated by the Gibbs Sampler. Then
(µ, ā, b̄)(t), δa(t) and δb(t) are three independent Markov chains. 8

Corollary: Tgibbs = T (µ, ā, b̄)

8 Papaspiliopoulos,Roberts&Z. Scalable Bayesian computation for crossed effect models. In preparation
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Complexity of standard Gibbs for crossed effects

Corollary

Tgibbs = T (µ, ā, b̄) = 1 + max

{
Jτe
τa
,
I τe
τb

}
= O(max {#rows,#columns})

Thus Tgibbs ≥ O(N1/2) and Costgibbs = O(N) ⇒ Costgibbs ≥ O(N3/2)
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K factors case

yi1...iK ∼ N(µ+ a
(1)
i1

+ · · ·+ a
(K)
iK
, τ−1

e ) ik = 1, .. ., Ik ; k = 1, .. .,K .

Theorem
Let (µ, a(1), . . . , a(K))(t) be the Markov chain generated by the Gibbs Sampler.
Then

1. (µ, ā(1), . . . , ā(K))(t) and (δa(1), . . . , δa(K))(t) are independent Markov chains.

2. T (µ, ā(1), . . . , ā(K))(t)≥T (δa(1), . . . , δa(K))(t)

Corollary

TGibbs = 1 + max
k=1,...,K

Nτe
Ikτk

= O
(

N

mink Ik

)
≥ O

(
N1−1/K

)
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Reparametrizations

If replace ai with γi = µ+ ai or ηj = µ+ bj then

Ta−centred =

(
1 +

τa
Jτe

)(
1 +

I τe
τb

)
= O(I )

Tb−centred =

(
1 +

τb
I τe

)(
1 +

Jτe
τa

)
= O(J)

⇒ Reparametrizations do not solve the problem here
Things even worse for K > 2

Alternative methodological trick to get Tmix = O(1) ?
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Slow mixing - Geometric intuition
Crossed effects induce a strong negative correlation due to µ+ ā + b̄ ≈ ȳ
Nested models induce positive correlation due to µ ≈ γ̄ ≈ η̄ ≈ ȳ

Crossed: as data increase posterior concentrates on an (hyper)plane of
co-dimension 1 ⇒ it is sufficient to collapse one variable to break correlation!

Crucially, while collapsing a or b is computationally expensive (large matrix
inversions), collapsing µ is straightforward (one dimensional parameter)
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Collapsed Gibbs Sampler

Collapsed Gibbs Sampler:

1. Sample (µ, a) ∼ p(µ, a|b)
2. Sample (µ, b) ∼ p(µ, b|a)

equivalent
←−−−−−→

1. Sample µ ∼ p(µ|b)
2. Sample ai ∼ p(ai |µ, b) for all i
3. Sample µ ∼ p(µ|a)
4. Sample bj ∼ p(bj |µ, a) for all j

The collapsed version has basically the same cost per iteration as the original
Gibbs Sampler, but the mixing time is drastically different.

Theorem: for the crossed effect model under consideration, the collapsed Gibbs
sampler produces iid samples from µ, a, b|y .

⇒ Tcollapsed = 1 ⇒ Collapsed GS has complexity O(N)
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Introducing sparsity in the analysis

So far we assumed a full-matrix of observations
→ potentially unrealistic simplification!
Can we provide theory that handles sparsity?

Model:

yij ∼ N(µ+ ai + bj , τ
−1
e ) (i , j) ∈ S

with S ( {1, . . . , I} × {1, . . . , J} and sparsity level

α = |S|
IJ .

Balancedness assumption: S has constant row sums and column sums (each user
sees the same number of movies, each movie seen by the same number of users)
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Multigrid analysis for sparse crossed models

Theorem
Let ((µ, a, b)(t))∞t=0 be the Markov chain generated by the Gibbs Sampler. Then
(µ, ā, b̄)(t) and (δa, δb)(t) are two independent Markov chains. Moreover
T (µ, ā, b̄) ≥ T (δa, δb).

Corollary : Tgibbs = T (µ, ā, b̄) = 1 + max

{
αJ

τe
τa
, αI

τe
τb

}
≈ max {#obs.per row,#obs.per col.}

NB: sparsity helps the Gibbs Sampler!
However Tgibbs can still grow with N. What can we say about collapsing µ?

Corollary : Tµ-collapsed = T (δa, δb)
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µ-collapsing and the residual process

Theorem (Rate of residual process)

ρ(δa,δb) =
αJτe

αJτe + τa

αI τe
αI τe + τb

ρX

where X is the simple random walk on the bipartite
graph with adjacency matrix S .

Corollary

Tµ-collapsed =
1

1− ρ(δa,δb)

≤ 1 + min

{
αJ

τe
τa
, αI

τe
τb
,TX

}
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TX mixing time of the auxiliary random walk on the bipartite graph

Tgibbs ≈ max {#obs.per row,#obs.per col.}
Tµ-collapsed ≈ min {#obs.per row,#obs.per col.,TX}

Crucially, as #obs.per row/col. grow TX decreases, so min stays small.

Examples of graphs
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Simulated data

K = 2, I = J →∞. Observe each yij with prob. 0.1 independently of the rest.
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ETH Instructors evaluation dataset

Standard data-set available as InstEval from lme4 R package
Collects university lecture evaluations by students at ETH Zurich.
N = 73.421 data-points, K = 5 factors, (I1, . . . , I5) = (2972, 1128, 4, 6, 14)

Fixed variances

Factors Tmix (numerical) Tmix (theory prediction)
included GS collapsed GS GS collapsed GS
1 and 2 68.9 7.8 66.1 8.3
1 and 5 5245.6 4.8 5245.4 5.0

all 36687 137.2 36711.5

Table: Mixing times (computed numerically or ”predicted” with theory)
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ETH Instructors evaluation dataset

Unknown variances

Scheme
time per min(ESS)/

1000 iter. time
vanilla GS 13.2s 0.07

collapsed GS 14.2s 2.51
GS+PXDA 13.5s 0.06
cGS+PXDA 14.4s 2.96

HMC 1112.6s 0.08

Table: Numbers are averaged over 10 runs of 10000 iterations for each scheme,
discarding the first 1000 samples as burn-in.

Collapsed version improves by 1-2 orders of magnitude over standard Gibbs or
HMC.
For comparison lme4 package took 40.9 seconds to fit the same model.
NB: times for various Gibbs Samplers correspond to basic R implementation.
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Conclusions

Contributions

• Multigrid approach to analyze Gibbs Samplers in multilevel linear models
• Complexity statements and quantitative guidance on centering and collapsing
• O(N) sampler for crossed effect models
• Neat connection between MCMC behavior and model’s graphical structure

Missing to get a clearer picture

• Analyze case of unknown variances
• Quantify the impact of unbalancedness

Take-home message

• For large “random-effect” models Bayes with linear complexity is achievable
• Need to exploit models structure
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Conclusions

More broadly

• Assess relevance of proposed methodology in non-gaussian cases?
• General theory and connections with design of experiments literature?
• Exploit collapsing trick in other contexts (e.g. probabilistic matrix factoriz.)

Arxiv preprints:

• G.Zanella & G.Roberts (2017) Analysis of the Gibbs Sampler for Gaussian
hierarchical models via multigrid decomposition. Arxiv preprint.

• O.Papaspiliopoulos & G.Zanella (2017) A note on MCMC for nested
multilevel regression models via belief propagation. Arxiv preprint.

• O.Papaspiliopoulos, G.Roberts & G.Zanella (2018) Scalable inference for
crossed random effects models. Arxiv preprint.
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