Linear Algebra Ι (7,5 ECTS)

Course Code: 

Elements and calculus in Rn, lines and planes in Rn. Matrices and matrix multiplication, Elementary matrices. Linear systems: The Gauss algorithm and the factorization PΑ=LDU. Inverse and transposed matrices, the algorithm Gauss-Jordan. Symmetric matrices and the Cholesky factorization. Vector spaces and subspaces. Linear systems: the solution of m equations with n unknowns and the rank of a matrix. Linear independence, bases and dimension. The four fundamental subspaces of a matrix. The fundamental theorem of Linear Algebra. Linear transformations of Rn and matrices. Orthogonal subspaces, and orthogonal complement of a subspace. Projections and least squares approximations. Orthogonal matrices.

     Recommended Reading

  • Gilbert Strang (1999), Γραμμική Άλγεβρα και Εφαρμογές, Πανεπιστημιακές Eκδόσεις Κρήτης.
  • Lipschutz, S., Lipson Marc Lars, Γραμμική Άλγεβρα, 5η Έκδοση, Εκδόσεις Τζιόλα, 2013.
  • Ε. Ξεκαλάκη & Ι. Πανάρετος (1993), Γραμμική Άλγεβρα για Στατιστικές Εφαρμογές, Αθήνα.
  • Η. Φλυτζάνης (1999), Γραμμική Άλγεβρα & Εφαρμογές, Τεύχος Α: Γραμμική Άλγεβρα, Το Οικονομικό.
  • Γ.Δονάτος-Μ.Αδάμ (2008), Γραμμική Άλγεβρα Θεωρία και Εφαρμογές, Gutenberg.
  • Graybill, F. A. (1969), Introduction to Matrices with Applications in Statistics, Wadsworth, Belmont, CA.
  • Harville, D. A. (1997), Matrix Algebra from a Statistician’s perspective, Springer.
  • Healy, M.J.R. (1995), Matrices for Statistics, Oxford University Press.
  • Searle, S. R. (1982), Matrix Algebra Useful for Statistics, Wiley.

(old title: Linear Algebra and Applications)